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Introduction

Kernel methods increases the range of application for standard
algorithms like SVM, Ridge Regression, PCA etc.

Difficult to calculate and store the kernel matrix for all samples:

Kernel calculation time: O(n2d)
Space: O(n2)
Prediction time: O(n̄d), with n̄ = #SVs

Approximation of kernel matrix increases time and space efficiency of
the kernel SVM algorithm

LDKL [1] and DC-Pred++ [2] are state of the art in approximate
kernel SVM methods
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Nyström Method
History

Nyström method for approximating Gram Matrix introduced by
Williams and Seeger, 2001 [3]

Great improvements made by a series of papers like Drineas and
Mahoney, 2005 [4]

Kumar et al., 2009 proposed an ensemble model of Nyström
approximations to achieve state of the art [5]
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Nyström Method
A brief peek

Given m << n landmark points, {uuuj}mj=1, the Nyström method forms

C ∈ Rn×m and W ∈ Rm×m such that Cij = K (xxx i ,uuuj) and Wij = K (uuui ,uuuj)
to get

G ≈ Ḡ = CW †CT (1)

with a nice bound on ‖Ḡ − G‖ξ, ξ = 2,F [4]
The decision value is calculated as

ccc(W †CTααα) = cβcβcβ (2)

where, ccc = [K (xxx ,uuu1), . . . ,K (xxx ,uuum)]
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Nyström Method
Pros and Cons

Kernel calculation time: O(m2n)

Space: O(mn)

Prediction time: O(md)

Typically, m > 100 needed for reasonable accuracy [2].

Prediction Time Approximation Error

Large m ↑ ↓
Small m ↓ ↑

How to resolve this trade off?
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Main Idea

Three novel propositions:

Add pseudo-landmark points to resolve the tradeoff

Use weighted k-means to achieve better bounds

Use divide and conquer approach for better prediction time
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Pseudo landmark points

Add p pseudo landmark points {vvv t}pt=1 from Rd (not necessary input
samples)

Estimate K (xxx ,vvv t) for all t using a function ft : Rm −→ R using
ccc = [K (xxx ,uuu1), . . . ,K (xxx ,uuum)] as the input for all ft
ft is obtained by:

Triangle inequality for stationary kernels
Regression and (low degree) polynomial basis functions for general
kernels
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Pseudo landmark points

Obtain C̄ = [C ,C ′] by augmenting the matrix C with the estimated
values of K (xxx i ,vvv t) using ft , giving

G ≈ Ḡ = C̄ W̄ C̄T and W̄ = C̄ †G (C̄ )T (3)

Instead of G in the RHS, use a submatrix of the kernel matrix while
minimizing approximation error
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Weighted k-means

It suffices to minimize kernel approximation error on {i} with large
|α∗i |, instead of all samples

For stationary kernels, the following gives minimum error:

Perform weighted k-means using K (xxx i ,xxx j) as distance measure and
{α∗

i }ni=1 as weights
For all p clusters, the cluster centroids are the pseudo landmark points
Use any approximate solver to get the weights {α∗

i }ni=1
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Divide and conquer

Modified the approach taken by Hsieh et al, 2013 [6]

Use k-means on input space distances to form a hierarchial clustering
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Divide and conquer

Assign the pseudo landmark points obtained by weighted k-means to
nearest clusters

Train a Nyström approximation model on every cluster, using these
local pseudo landmark points

Early prediction: Return the prediction of the local cluster model,
instead of the global model, for the test sample as in [6]

Note: Divide and conquer and Weighted k-means applicable for SVM and
Ridge Regression only
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Multiple Kernel Learning
History

Studies such as Lanckriet et al., 2004 show that combining multiple
kernels improves classification performance [7]

Simplest implementation: Unweighted sum - Pavlidis et al., 2001,
Ben-Hur and Noble 2005 [8, 9]

Bach et al., 2004 showed a method of incorporating SMO in convex
combination of kernels [10]
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Multiple Kernel Learning
Localized Multiple Kernel Learning (LMKL)

Assigning different weights to kernels in different regions may improve
classification accuracy
LMKL [11] is an important landmark towards the development of LDKL
utilizing this idea

LMKL

y(x) = sign(
∑
k

p(wwwk |x)wt
kφk(x) + b) (4)

p(wk |x) =
eθθθ

t
kxxx+θ0k∑

m eθθθtmxxx+θ0m
(5)

Θ = {(θθθk , θ0k)} (6)

Solver based on the efficient MKL solver in Rakotomamonjy et al., [12]
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Localized Multiple Kernel Learning
Pros and Cons

Experimental results show:

Distinct kernels

Accuracy unchanged, support vectors ↓
Same kernels

Accuracy ↑, support vectors ↓

Dhruv Singal, Pranav Maneriker A study of kernel SVM approximation methods



Outline

1 Introduction

2 DC-Pred++
Prior Art
Algorithm

3 LDKL
Prior Art
Description

4 Performance comparison

Dhruv Singal, Pranav Maneriker A study of kernel SVM approximation methods



Localized Deep Kernel Learning

The LDKL[1] learns a non-linear kernel K as a product of a global and a
local kernel

K (xxx i ,xxx j) = KL(xxx i ,xxx j)KG (xxx i ,xxx j)

LDKL

y(x) = sign(W t(xxx)φG (xxx)) (7)

wwwk =
∑
i

αiyiφLk (xxx i )φG (xxx i ), φL ∈ RM (8)

W = [www 1, ...,wwwM ] (9)

W (xxx) = WφL(xxx) (10)
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Local Kernel Tree

θθθt0xxx > 0

θ0

θ1

θ3 θ4

θ2

θ5 θ6

+ -
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Local Kernel Tree

θθθt0xxx > 0, θθθt1xxx < 0

θ0

θ1

θ3 θ4

θ2

θ5 θ6

+ -

+ -
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Local Kernel Tree

θθθt0xxx > 0, θθθt1xxx < 0, θ4θ4θ4

θ0

θ1

θ3 θ4

θ2

θ5 θ6

+ -

+ -
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Local Kernel

For a deep representation of tree like structured local kernel, we choose

φLk (xxx) = Ik(xxx)fk0(xxx , fk1(xxx , ...(fkR (xxx , 1)))) (11)

where each ki is the i th ancestor of k and

Ik(xxx) = Πl∈Ancestors(k)
1

2
(sign(θθθtl xxx) + (−1)C(l)) (12)

C (l) = 0 if node l is its parents left child and C (l) = 1 if it is its parents
right child
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Local Kernel

For a deep representation of tree like structured local kernel, we choose

φLk (xxx) = Ik(xxx)fk0(xxx , fk1(xxx , ...(fkR (xxx , 1)))) (11)

where each ki is the i th ancestor of k and

Ik(xxx) = Πl∈Ancestors(k)
1

2
(sign(θθθtl xxx) + (−1)C(l)) (12)

in the paper, best results are said to be obtained with

φLk (xxx) = tanh(σθθθ
′t
k xxx)Ik(xxx) (13)
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Algorithm

Primal for jointly learning Θ, Θ′ and W

min
W ,Θ,Θ′

P(W ,Θ,Θ′) =
λW

2
Tr(W tW ) +

λΘ

2
Tr(ΘtΘ) +

λΘ′

2
Tr(Θ′tΘ′)

+
N∑
i=1

L(yi , φ
t
L(xxx i )W txxx i )

where L is the hinge loss for binary classification
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Algorithm

Primal stochiastic sub-gradient descent

W ,Θ and Θ′ updated as

W j+1 = W j − ηj∇W P(W j ,Θj ,Θ′j ,xxx i )

Θj+1 = Θj − ηj∇ΘP(W j ,Θj ,Θ′j ,xxx i )

Θ′j+1 = Θ′j − ηj∇′ΘP(W j ,Θj ,Θ′j ,xxx i )

where ηj is the step size at iteration j
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Algorithm

Primal stochiastic sub-gradient descent

and

∇wwwk
P(xxx i ) = λWwwwk − δiyiφLk (xxx i )xxx i

∇θθθk P(xxx i ) = λΘθθθk − δiyi
∑
l

tanh(σθθθ
′t
l xxx i )∇θθθk Il(xxx i )www

t
l xxx i

∇θθθ′k P(xxx i ) = λΘθθθ
′
k − δiyiσ(1− tanh2(σθθθ

′t
k xxx i ))Ik(xxx i )www

t
kxxx ixxx j

To make the optimisation tractable, and for ∇I to exist, we use a tanh(.)
parametrised by a scale parameter which is adaptively scaled to tend to
sign(.) by the time convergence is reached
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Performance comparison

Data Set Linear
SVM

RBF-SVM DC-
Pred++

LDKL

CovType
Train=522,910
Test=58,102
Dims=54

A = 76.32% A = 91.21%
P = 131,785x

A = 95.19%
P = 18.8x
T = 372s

A = 88.21%
P = 32x
T = 4095s

Letter
Train=12,000
Test=6,000
Dims=16

A = 73.02% A = 97.20%
P = 1548x

A = 95.90%
P = 12.8x
T = 1.2s

A = 96.30%
P = 33x
T = 243s

A = Accuracy(%), P = Prediction Time(times Linear SVM), T = Training Time(s)

Source: Jose et al., 2013 [1] and Hsieh et al., 2014 [2]
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