
Study of kernel SVM approximation methods
DC-Pred++ and LDKL

Dhruv Singal Pranav Maneriker

November 15, 2015

Abstract

In this project, we analyze two state of the art kernel SVM approx-
imation algorithms - LDKL[1] and DC-Pred++[2] in detail. We trace
the ideas which influenced these algorithms strongly and present a brief
overview of the history of contributions culminating in these landmark
algorithms. We also present the novel ideas proposed in these algorithms
in a lucid and comprehensive manner.

1 Introduction

Kernel methods form the backbone of machine learning. Kernels expand the
horizons of standard algorithms used in machine learning like SVM, Ridge Re-
gression, PCA, k-means, etc. and allow these algorithms to be used in settings
which are non-linear by nature. For example, SVM outputs hyperplanes as
separators in the space of input vectors for the binary classification problem.
However, in general, a lot of practical applications have input vectors which are
not linearly separable. In those cases, kernels help generalize the SVM algorithm
by mapping the vectors from the d-dimesional input space X to a D-dimesional
feature space F via a possibly non-linear function φ : X −→ F . The algorithm
now works in the feature space instead of the input space, which makes the
algorithm more robust and applicable to a wider range of situations.

A key point to note in kernel methods is that any algorithm whose training
and prediction depend only on inner products between vectors of the input
space, can be kernelized. The kernel matrix G is the Gramian matrix which
stores the inner products of the training vectors (in the features space), i.e.
Gij =< φ(xxxi), φ(xxxj) >= K(xxxi,xxxj), where K is the kernel function. Since G is
a Gramian matrix, it is symmetric and positive semidefinite.

The SVM algorithm is one of the most essential algorithms used in the setting
of binary classification. It is a robust method which applies to a wide range of
situations with nice error bounds. A major point in its favor is that it has been
shown that kernels apply very successfully to SVMs.

Almost surely, every kernelized algorithm uses G in its entirety. However, if
the number of input points n (with dimension d) becomes very large, it becomes
difficult to compute and store G. It takes O(n2d) time to calculate G (if we
assume that it takes O(1) time to compute K(·, ·)). Also, it takes O(n2) space
to store G. In case of the kernel SVM algorithm, if n̄ = #SVs, it takes O(n̄d)
time for prediction. Given a test sample xxx, the prediction value is calculated as∑n
i=1 αiK(xxx,xxxi).

1

Approximation of the kernel SVM becomes important to improve the time
and space efficiency, while not compromising on accuracy. LDKL [1] and DC-
Pred++ [2] are the state of the art algorithms in approximate kernel SVM
methods. We will analyze these algorithms in detail in the subsequent sections.

2 DC-Pred++

DC-Pred++ is the name given to the algorithm proposed by Hsieh, Si and
Dhillon in [2]. The algorithm is based on the classical method of Nystrom
method which has been used in numerical analysis. It improves the state of
the art in kernel SVM approximation by matching benchmark accuracy and
upgrading on the training time and prediction time significantly.

2.1 Nystrom Method

2.1.1 History

Nystrom method for approximating kernels has been a topic of rigorous research
in the last few decades. This thread of research began when it was shown by
Williams and Seeger, 2001 that Nystrom method can be used to approximate
Gram matrices [3]. As a result, subsequent papers demonstrated the efficacy of
this method and improved bounds and error guarantees. Drineas and Mahoney,
2005 [4] are responsible for introducing the method as it is used in contemporary
literature. The state of the art in Nystrom methods was achieved by Kumar et
al., 2009 who proposed an ensemble model of Nystrom approximations [5].

2.1.2 A brief peek

As introduced in [4], the Nystrom method for approximating a gram matrix G
starts off by taking m << n landmark points, {uuuj}mj=1 such that uuuj ∈ X are
sampled from the set of input vectors. We then set up the matricies C ∈ Rn×m
and W ∈ Rm×m such that Cij = K(xxxi,uuuj) and Wij = K(uuui,uuuj). As is evident
from definitions of C and W , these are submatrices of the original Gram matrix
G. Now, as shown in [4], the matrix G is approximated as Ḡ using the matrices
C and W as follows:

G ≈ Ḡ = CW †CT (1)

An important property of this method is that ‖Ḡ−G‖ξ, ξ = 2, F has a (small)
bounded value [4]. This implies that the approximation of Ḡ hence obtained
is quite close to the original matrix G. Given C, W and the model α, the
prediction value for a test sample x is calculated as

ccc(W †CTααα) = cβcβcβ (2)

where, ccc = [K(xxx,uuu1), . . . ,K(xxx,uuum)]. Hence, β can be precomputed and stored
in only O(n) space.

2.1.3 Pros and cons

As is apparent from the discussion above, the improvements of this approxima-
tion over the traditional kernel SVM results in terms of both time and space

2

compexity involved. It now takes O(m2nd) (compared to O(n2d)) to calcu-
late the (approximate) kernel matrix. Also, the information contained in the
matrix can be retrieved using only O(mn) space (compared to O(n2)). Most
importantly, the prediction time also reduces to O(md). Inherently, the fast ap-
proximation of the kernel matrix reduces the training time tremendously, since
only the landmark points are required for training, compared to the whole data
set.

In practice, however, it is observed that typically m > 100 is needed for rea-
sonable accuracy [2]. This results in a tradeoff between prediction (and training)
time and approximation error. For large values of m, while the approximation
error goes down, the prediction time increases linearly. On the other hand, for
small values of m, while the prediction time is less, the approximation error
blows up. DC-Pred++ tries to resolve this tradeoff using a novel approach, as
discussed below.

2.2 Algorithm

DC-Pred++ differs from the classical Nystrom method on its use of three novel
propositions, which work in tandem to help it achieve better results than the
state of the art techniques. The propositions are the following:

• Adding pseudo-landmark points to resolve the tradeoff between approxi-
mation error and prediction time

• Using weighted k-means to give better approximation with pseudo-landmark
points

• Implementing divide and conquer approach for improving the prediction
and training time dramatically

We will go over each of these ideas in the subsequent sections. While the idea
of pseudo-landmark points is applicable to kernel approximation in any setting,
the weighted k-means and divide and conquer approach is valid only for kernel
SVM and kernel ridge regression.

2.2.1 Pseudo-landmark points

We know from a previous section, that adding landmark points decreases the ap-
proximation error, while sacrificing the prediction time. To resolve this tradeoff,
DC-Pred++ proposes adding pseudo-landmark points instead.

We consider p pseudo landmark points {vvvt}pt=1 such that vvvt ∈ Rd are sampled
from the whole input space Rd, instead of just the set of input vectors. Now, we
know that the Nystrom method requires two matrices C and W . For modifying
the Nystrom method to include the pseudo-landmark points, we are required
to calculate {K(xxx,vvvt)}pt=1 for any vector xxx. Here, insteading of calculating
this value using the kernel function K as in the case of landmark points, DC-
Pred++ estimates it as K(xxx,vvvt) ≈ ft(ccc) using a function ft : Rm −→ R using
ccc = [K(xxx,uuu1), . . . ,K(xxx,uuum)].

For stationary kernels, the functions {ft}pt=1 are obtained by using the tri-
angle inequality, using the fact that stationary kernel values only depend on

3

||xxx− vvvt||. For any general kernel, the functions are obtained by using a regres-
sion based approach via (low degree) polynomial basis functions. The details of
these approaches can be found in [2].

The modification in the Nystrom approach using the pseudo-landmark points
is formulated in the following manner. First, we obtain C̄ = [C,C ′] by augment-
ing the matrix C with the estimated values of K(xxxi, vvvt) using ft. Now, using
this matrix C̄, the kernel matrix G is approximated as:

G ≈ Ḡ = C̄W̄ C̄T and W̄ = C̄†G(C̄)T (3)

Note, the value of W̄ is now calculated using C̄ and G itself, as the pseudoin-
verse can not be used since the values in matrix C are now approximate values
(due to the use of functions ft). It can be shown that taking W̄ = C̄†G(C̄)T

minimizes ‖Ḡ−G‖F if Ḡ is restricted to the range space of C̄.
Now, to overcome the challenging fact that G itself is used to estimate G, in

the RHS of the equation, we use a submatrix Gsub of the whole kernel matrix
G and use the corresponding vectors only in C̄. This speeds up the calculation
and does not require the use of the whole kernel matrix.

2.2.2 Weighted k-means

It is shown in [2] that it suffices to minimize kernel approximation error on {i}
with large |α∗i |, instead of all the input samples, as the vectors with small |α∗i |
do not contribute to the error significantly in case of kernel SVM.

For stationary kernels, a novel approach is suggested which involves using
weighted k-means. First, perform weighted k-means on the input vectors using
p as the number of clusters, K(xxxi,xxxj) as the distance measure and {ᾱ∗i }ni=1

(which are approximate values of {α∗i }ni=1 obtained using any fast approximate
kernel SVM solver) as weights. Finally, we use the p cluster centroids hence
obtained as the pseudo-landmark points, instead of choosing any points in Rd.
It is shown that this approach minimizes the error on {i} with large |α∗i | for
kernel SVM.

2.2.3 Divide and conquer

To reduce the prediction time, the algorithm makes use of the approach proposed
in [6]. It involves performing normal k-means i.e. unweighted k-means on the
input vectors using some constant l as number of clusters and L2-norm (i.e.
Euclidean norm) on the input space as the distance metric. This k-means is
performed recursively to form a hierarchy of such clusters. An example of such
clustering with l = 4 and two levels of hierarchy is given below:

4

Now, the pseudo-landmark points i.e. the weighted k-means cluster centroids
earlier obtained by the weighted k-means are assigned to the nearest clusters
(based on L2-norm). Now, a Nystrom approximation model is trained on every
cluster (at the lowest level), using these local pseudo-landmark points. The
approximate values of {α∗i }ni=1 for the higher levels can be obtained using the
adaptive clustering idea of [6]. For the prediction phase, the early prediction
idea of [6] is used, which essentially returns the prediction of the local cluster
model (at some pre-determined level), instead of the global model, for the test
sample. As the value of c is now calculated only for that particular cluster, the
prediction time is significantly reduced, while the approximation error is still
low.

3 Local Deep Kernel Learning (LDKL)

To understand LDKL, we start with the idea of multiple kernel learning.

3.1 Multiple Kernel Learning

The main idea behind multiple kernel learning is that it might be possible to
improve errors by using some combination of kernels instead of a single kernel.
The paper by Lanckriet et al. [7] tried to formulate the problem of learning a
kernel using a semidefinite program. In a section of the paper, the authors also
show that using combinaitons of kernels can lead to lower errors. This idea of
combining kernels had alread been utilized in a few domain specific papers such
as the ones by Pavlidis et al [8] and Ben Hur, Noble [9]. These papers use an
unweighted sum of kernels.
In general, it may be better to learn the kernel as a convex combination of
kernels but a simple algorithm for optimising such a kernel was only introduced
by Bach et al [10].
These kernel combiations are global, in the sense that once we learn a set of
weights corresponding to a set of kernels, we use them in the entire feature
space. While these may be good, they do not utilize the information given by
the data locally. For example, some points in a dataset may be more likely to be
among one class than others in some region of the space, but learning a global
kernel can only focus on minimizing error over the whole space and not make

5

local optimizations.

3.2 Localized Multiple Kernel Learning (LMKL)

3.2.1 Algorithm

LMKL[11] utilizes the idea that assigning different weights to kernels in different
regions may help improve classification accuracy. The mathematical model for
this algorithm is:

y(x) = sign(
∑
k

p(wwwk|x)wt
kφk(x) + b) (4)

p(wk|x) =
eθθθ

t
kxxx+θ0k∑

m e
θθθtmxxx+θ0m

(5)

Θ = {(θθθk, θ0k)} (6)

Note that this is not a convex model due to the presence of the p(WWW k|xxx) term.
The algorithm to learn this is similar to the one in Rakotoamonjy et al [12].
It optimises the function by first optimising the kernel for a gating model and
then updating the model. This steps alternate until convergence.

3.2.2 Pros and Cons

Experimental results show:

• Distinct kernels

– Accuracy unchanged, support vectors ↓

• Same kernels

– Accuracy ↑, support vectors ↓

3.3 Localized Deep Kernel Learning(LDKL)

LDKL[1] is based on the generalization of the idea of LMKL. It learns a non
linear kernel as the matrix product of a local and a global kernel.

K(xxxi,xxxj) = KL(xxxi,xxxj)KG(xxxi,xxxj)

The mathematical model is:

y(x) = sign(W t(xxx)φG(xxx)) (7)

wk =
∑
i

αiyiφLk
(xxxi)φG(xxxi), φL ∈ RM (8)

W = [www1, ...,wwwM] (9)

W (xxx) = WφL(xxx) (10)

6

3.3.1 Local Kernel

The local kernel is a high dimensional tree structured kernel. For a deep repre-
sentation, the kernel is chosen as follows:
φLk

stands for the kth dimension of the feature space representation.

φLk
(xxx) = Ik(xxx)fk0(xxx, fk1(xxx, ...(fkR(xxx, 1)))) (11)

where each ki is the ith ancestor of k and

Ik(xxx) = Πl∈Ancestors(k)
1

2
(sign(θθθtlxxx) + (−1)C(l)) (12)

C(l) = 0 if node l is its parent’s left child and C(l) = 1 if it is its parent’s right
child

Note that LDKL would generate a piecewise smooth boundary if fkr would
be a smooth function of θθθtkrxxx with fkr (xxx, z) = 0 whenever θθθtkrxxx = 0. This
ensures that when φLk

tends to zero, so do its ancestors. In particular, the
choice of the function for the results in the paper is taken as:

φLk
(xxx) = tanh(σθθθ

′t
kxxx)Ik(xxx) (13)

The indicator function is designed so that the kernel feature space is a tree
shaped one. Since we only work with a path in the kernel, the overall prediction
time for the algorithm is O(DlogM) where D is the dimensionality of the vector
xxx and M is the dimensionaliry of the local kernel space. (Assuming a linear
global kernel
For a vector xxx, the indicator function can be understood with the aid of the
following series of diagrams:

θ0

θ1

θ3 θ4

θ2

θ5 θ6

+ -

Figure 1: θθθ0xxx > 0

Since the nodes that are visited are 0, 1 and 4, we will only pick up these
components from the deep kernel function. Thus, if our local kernel has dimen-
sion m, the number of non zero dimensions in the feature space representation
would be log(m)

7

θ0

θ1

θ3 θ4

θ2

θ5 θ6

+ -

+ -

Figure 2: θθθ0xxx > 0, θθθ1xxx < 0

θ0

θ1

θ3 θ4

θ2

θ5 θ6

+ -

+ -

Figure 3: θθθ0xxx > 0, θθθ1xxx < 0, θ4θ4θ4

3.3.2 Algorithm

The primal problem for jointly learning Θ, Θ′ and W

min
W,Θ,Θ′

P (W,Θ,Θ′) =
λW
2
Tr(W tW) +

λΘ

2
Tr(ΘtΘ) +

λΘ′

2
Tr(Θ′tΘ′)

+

N∑
i=1

L(yi, φ
t
L(xxxi)W

txxxi)

where L is the hinge loss for binary classification, L = max(0, 1−yiφtL(xixixi)W
txxxi)

The algorithm used for optimizing this is a primal stochiastic sub-gradient
descent. Note that the algorithm optimizes the primal function directly. The
update rules for this algorithm are:

W j+1 = W j − ηj∇WP (W j ,Θj ,Θ′j ,xxxi) (14)

Θj+1 = Θj − ηj∇ΘP (W j ,Θj ,Θ′j ,xxxi) (15)

Θ′j+1 = Θ′j − ηj∇′ΘP (W j ,Θj ,Θ′j ,xxxi) (16)

where ηj is the step size at iteration j. The various gradients are defined as
follows:

∇wwwk
P (xxxi) = λWwwwk − δiyiφLk

(xxxi)xxxi (17)

∇θθθkP (xxxi) = λΘθθθk − δiyi
∑
l

tanh(σθθθ
′t
l xxxi)∇θθθkIl(xxxi)www

t
lxxxi (18)

∇θθθ′kP (xxxi) = λΘθθθ
′
k − δiyiσ(1− tanh2(σθθθ

′t
kxxxi))Ik(xxxi)www

t
kxxxixxxj (19)

8

To make the optimisation tractable, and for ∇I to exist, we use a tanh(.)
parametrised by a scale parameter which is adaptively scaled to tend to sign(.)
by the time convergence is reached. The relaxed Ik :

Ik(xxx) =
∏

I∈Ancestors(k)

1

2
(tanh(siθθθ

t
lxxx) + (−1)C(l)) (20)

The reason for choosing the primal is that the dual optimisation would have
been a two stage alternating process which was found by the authors to be
significantly more expensive.

4 Performance comparison

Data Set Linear
SVM

RBF-SVM DC-
Pred++

LDKL

CovType
Train=522,910
Test=58,102
Dims=54

A = 76.32% A = 91.21%
P = 131,785x

A = 95.19%
P = 18.8x
T = 372s

A = 88.21%
P = 32x
T = 4095s

Letter
Train=12,000
Test=6,000
Dims=16

A = 73.02% A = 97.20%
P = 1548x

A = 95.90%
P = 12.8x
T = 1.2s

A = 96.30%
P = 33x
T = 243s

Figure 4: A = Accuracy(%), P = Prediction Time(times Linear SVM), T =
Training Time(s) Source: Jose et al., 2013 [1] and Hsieh et al., 2014 [2]

We see from the results that DC-Pred++ in general tends to perform the
best among all these algorithms. The fast prediction times are a result of the
early prediction idea (return the local prediction). Also, it seems that DC-
Pred++ performs better than RBF-SVM on the covertype dataset. This un-
usual behaviour may be explained by the locality displayed by both the cover-
type dataset and the algorithm itself. A cover of a certain kind (land, water
etc.) will tend to cluster locally and hence it lends itself to the cluster based
prediction strategy used by DC-Pred++.

References

[1] Cijo Jose, Prasoon Goyal, Parv Aggrwal, and Manik Varma. Local deep
kernel learning for efficient non-linear svm prediction. In Proceedings of
the 30th International Conference on Machine Learning (ICML-13), pages
486–494, 2013.

[2] Cho-Jui Hsieh, Si Si, and Inderjit S Dhillon. Fast prediction for large-scale
kernel machines. In Advances in Neural Information Processing Systems,
pages 3689–3697, 2014.

[3] Christopher Williams and Matthias Seeger. Using the nyström method to
speed up kernel machines. (EPFL-CONF-161322):682–688, 2001.

9

[4] Petros Drineas and Michael W Mahoney. On the nyström method for
approximating a gram matrix for improved kernel-based learning. The
Journal of Machine Learning Research, 6:2153–2175, 2005.

[5] Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. Ensemble nystrom
method. In Advances in Neural Information Processing Systems, pages
1060–1068, 2009.

[6] Cho-Jui Hsieh, Si Si, and Inderjit S Dhillon. A divide-and-conquer solver
for kernel support vector machines. arXiv preprint arXiv:1311.0914, 2013.

[7] Gert RG Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui,
and Michael I Jordan. Learning the kernel matrix with semidefinite pro-
gramming. The Journal of Machine Learning Research, 5:27–72, 2004.

[8] Paul Pavlidis, Jason Weston, Jinsong Cai, and William Noble Grundy.
Gene functional classification from heterogeneous data. In Proceedings of
the fifth annual international conference on Computational biology, pages
249–255. ACM, 2001.

[9] Asa Ben-Hur and William Stafford Noble. Kernel methods for predicting
protein–protein interactions. Bioinformatics, 21(suppl 1):i38–i46, 2005.

[10] Francis R Bach, Gert RG Lanckriet, and Michael I Jordan. Multiple kernel
learning, conic duality, and the smo algorithm. In Proceedings of the twenty-
first international conference on Machine learning, page 6. ACM, 2004.

[11] Mehmet Gönen and Ethem Alpaydin. Localized multiple kernel learning.
In Proceedings of the 25th international conference on Machine learning,
pages 352–359. ACM, 2008.

[12] Alain Rakotomamonjy, Francis Bach, Stéphane Canu, and Yves Grand-
valet. More efficiency in multiple kernel learning. In Proceedings of the
24th international conference on Machine learning, pages 775–782. ACM,
2007.

10

