
2024 IEEE International Conference on Big Data (Big Data)

979-8-3503-6248-0/24/$31.00 ©2024 IEEE
840

LIVE-ITS: LSH-based Interactive Visualization
Explorer for Large-Scale Incomplete Time Series

Hongjie Chen
Dolby Labs.

Atlanta, USA
hongjie.chen@dolby.com

Aaron D. Beachnau
Dolby Labs.

Atlanta, USA
ADB@dolby.com

Panos Thomas
Dolby Labs.

Atlanta, USA
panos.thomas@dolby.com

Pranav Maneriker
Dolby Labs.

Atlanta, USA
pranav.maneriker@dolby.com

Josh Kimball
Dolby Labs.

Atlanta, USA
josh.kimball@dolby.com

Ryan A. Rossi
Adobe Research
San Jose, USA

ryrossi@adobe.com

Abstract—Recent advances in time series research have created
a significant demand for better time series visualization tech-
niques, especially for large-scale datasets that contain millions
of time series or more. In this paper, we consider a common
use scenario where analysts aim to identify representative time
series from a large collection. These representative time series
generalize as many time series as possible and can be used for
downstream tasks. Building a visualization system for this sce-
nario involves many challenges, including visualizing, selecting,
and highlighting a subset of time series from the overall dataset.
Moreover, the potential for time series to be incomplete due to
missing records adds an extra layer of difficulty. To address
these challenges, we propose a novel visualization system, called
the Locality Sensitive Hashing-based Interactive Visualization
Explorer for large-scale Incomplete Time Series (LIVE-ITS).
On the frontend, LIVE-ITS allows analysts to interact with the
system and select representative time series in areas of interest.
In the backend, LIVE-ITS not only selects an optimal subset
that represents as many time series as possible, but also achieves
the best possible time complexity. Experiments on both synthetic
dataset and real-world datasets show that LIVE-ITS exhibits high
partition accuracy and high response efficiency, further validating
the effectiveness of our proposed visualization system.

Index Terms—large-scale time-series, incomplete time-series,
time-series visualization, visualization analytics

I. INTRODUCTION

Time series visualization is essential for many applica-
tions, such as meteorological analysis [29], [37], [47], ur-
ban planning [37], physiological signal processing [8], [27],
[41], among others [15], [16], [44], [46]. Hence, many basic
techniques for visualizing time series, such as timebox and
density plot, have been widely investigated [1]–[3]. Although
these tools and widgets have proven useful, recent advances
in time series research demand more powerful and responsive
time series visualization systems. In this paper, we address
a common use scenario where analysts wish to visualize a
collection of time series, freely select specific time series
of interests for further inspection, and retrieve similar time
series to those selected. An interactive visualization system
can be highly beneficial in this scenario. For instance, con-
sider an energy supply company that collects and generates

Fig. 1. An example of highlighting representative time series in a collection
of 8 time series. A number of κ = 2 non-overlapping groups are selected
and a time series in each group is selected as the time series representatives,
as depicted in the emphasized blue and orange colors. The represented time
series are also highlighted in the lighter colors. Hence, the selected time series
cover the largest number of time series.

numerous electricity usage time series from its millions of
client households. Analysts want to find what patterns most
electricity usage time series follow, for these representative
usage time series aid the downstream tasks, including load
scheduling optimization and pricing strategy development. An
interactive visualization system can help answer this question
by finding the most representative time series in a specific
period of interest as well as highlight similar time series.
This paper aims to address two primary challenges in building
such an interactive visualization system. (a) Given a large
collection of time series, how to efficiently select the most
representative time series? More specifically, we want to select
a small number, e.g., κ, of non-overlapping groups of time
series. Time series within each group should be highly similar
to each other in the same group. For each group, we also
select a time series representative that represents the group,

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

ig
 D

at
a

(B
ig

D
at

a)
 |

97
9-

8-
35

03
-6

24
8-

0/
24

/$
31

.0
0

©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
B

ig
D

at
a6

23
23

.2
02

4.
10

82
50

96

Authorized licensed use limited to: Dolby Library. Downloaded on April 24,2025 at 08:09:17 UTC from IEEE Xplore. Restrictions apply.

841

aiming for these κ non-overlapping groups to represent or
cover as many time series as possible. Fig. 1 depicts an
example of choosing κ = 2 time series representatives as well
as their represented groups from a collection of eight time
series. The selection process should be efficient and fast, and
ideally has no latency or delay. (b) When time series have
missing data, how can we incorporate these incomplete time
series during interactions? More specifically, how to render
incomplete time series visualization and handle them during
time series selection? An ideal visualization should not only
clearly demonstrate the missing data but also take them into
considerations when retrieving time series representatives.

To address the aforementioned challenges, we propose a
novel time series visualization system, namely, Locality Sen-
sitive Hashing-based Interactive Visualization Explorer for
Large-Scale Incomplete Time Series (LIVE-ITS). LIVE-ITS
is designed to visualize a large collection of incomplete time
series efficiently. Moreover, our design allows analysts to
select a time period of interest within which LIVE-ITS finds
and highlights the most representative time series and indicates
which each of these represent. The key contributions of our
approach are outlined below,

• Large-Scale Datasets. LIVE-ITS efficiently visualizes
large-scale time series datasets. The visualization is fast
and responsive, with a time complexity that scales lin-
early with the number of time series;

• Incomplete Time Series. LIVE-ITS supports visualiza-
tion for incomplete time series, where missing data are
highlighted and taken into account upon selection queries;

• Optimal Subset. Upon queries, LIVE-ITS instantly re-
trieves a subset of the most representative time-series, as
well as the series they represent. This subset represents
as many time series as possible that belong to a user-
selected κ number of non-overlapping groups. Notably,
these representatives do not necessarily cover all time
series, allowing for the presence of outlier time series.

Our paper is structured as follows: We begin with a brief
review of closely related work in Sec. II. We then describe
our visualization design in Sec. III, which covers both static
presentation and user interactions. Next, Sec. IV details our
proposed LSH-based algorithm. Specifically, Sec. IV-A ex-
plains the procedure for selecting time series representatives
through the problem formulation of time series subset selec-
tion. A proof is provided to show that our proposed partition-
based greedy algorithm yields an optimal subset, representing
as many time series as possible. The subset selection requires
a time series partitioning, which, as detailed in Sec. IV-B,
is instantiated using the Locality-Sensitive Hashing (LSH)
method. In Sec. V, we provide a time complexity analysis
demonstrating that our method achieves the best possible time
complexity. In Sec. VI, we design a series of experiments to
validate the effectiveness and efficiency of our LIVE-ITS. In
Sec. VII, an example is given to demonstrate how LIVE-ITS
can be used in a realistic scenario. Lastly, we summarize our
paper and point out potential future directions, as in Sec. VIII.

II. RELATED WORK

In this section, we briefly review closely related work on
large-scale time series visualization as well as subset selection.
Large-Scale Time Series Visualization. Many methods have
been proposed for visualizing time series, particularly for
large-scale time series datasets [8], [11], [15], [28], [31], [35],
[40], [47]. The objectives of existing methods span a wide
spectrum, including level-of-detail control [40], inter-relations
exploration between time series [11], [28], backend system
design [15], and data management [30], [31], among other
aspects [1], [5], [6], [9], [36], [42]. In this paper, our primary
objective is to develop an efficient interactive system for
visualizing large-scale incomplete time series. Earlier research
attempts include timesearcher [20], which utilizes timebox
widgets; line graph explorer [22], which is based on focus and
context; and other approaches utilizing bitmaps [23]. However,
they are not optimized for selecting representative time series
from large-scale datasets. More recent efforts focus on large-
scale datasets. For example, Plotly-resampler [41] performs
series-wise aggregation for scalability at the cost of inducing
data point loss. StreamStory [37] leverages machine learning
techniques to mine existing relations between in large-scale
time series. Perhaps the closest work to our LIVE-ITS is
KD-Box [47], which leverages a KD-tree structure with curve
density estimates. In contrast to KD-Box, which bundles time
series into a density field. Our approach visualizes each time
series individually, allowing for more refined selection con-
trol. KD-Box requires pre-computing of curve decomposition
and tree construction, whereas LIVE-ITS avoids these steps,
making it more lightweight and efficient. In the context of
incomplete time series visualization, related work includes
Stroscope [8], which leverages a ripple graph to visualize
irregularly measured time series. ViTST [25] takes a different
approach by converting irregular time series to images. To
the best of our knowledge, none of the existing work directly
targets incomplete time series visualization; therefore, our
proposed LIVE-ITS fills the emptiness in visualization systems
for incomplete time series.
Subset Selection. Finding a representative subset from a larger
pool of items is crucial to many applications, such as video
summarization and scene categorization, among others [4],
[12], [13], [32]. In the case of video summarization, the goal
of subset selection is to choose a few screenshots or frames
that capture the messages these videos convey. In contrast, our
time series application aims to select a subset of time series
that represents as many time series from the original set as
possible. Moreover, we impose a constraint on the number of
time series within the selected subset, that they should belong
to one of several non-overlapping groups. Each of these groups
contains time series that are highly similar to each other. A
straightforward solution is to compute a time-series clustering
and select a time series representative from each resulting
cluster to construct the subset [19], [24], [26], [39]. However,
this approach is computationally expensive and introduce high
latency in visualization rendering. In comparison, LIVE-ITS

Authorized licensed use limited to: Dolby Library. Downloaded on April 24,2025 at 08:09:17 UTC from IEEE Xplore. Restrictions apply.

842

Fig. 2. An example of the static presentation of LIVE-ITS using synthetic data. The blue circles and red squares indicate the starting and ending points of
the time series, respectively. The dashed lines highlight the missing values in the incomplete time series.

leverages time series partitioning through Locality-Sensitive
Hashing, which has a low time complexity and enables quick
rendering. The criteria for determining the best subset also
vary across different papers [17], [38], [43]. For example,
[47] utilizes time series density scores to select a subset
that best represents the time series trends. Another line of
work formulates the subset selection problem as a row-sparsity
regularized trace minimization problem to find a subset that
can represent all items in the target set [17]. This is a NP-hard
problem [13], [48], and is not practical for our use scenarios
due to the presence of outlier time series. Hence, our approach
aims to select a subset that represents as many time series as
possible, without necessarily including all time series, allowing
for the exclusion of outlier series.

III. VISUALIZATION DESIGN

In this section, we provide an overview of our visualization
design with respects to its static presentation and supported
user interactions.

A. Static Visualization

Our design primarily employs a line graph, where each
available time series is individually plotted [21]. The line graph
features two axes: the x-axis displays the timeline, and the y-
axis shows the series values [20]. Label ticks are properly
added to both axes to indicate the time and the value of each
time point. Additionally, we use the following visualization
cues to enhance clarity.

Non-selected Time Series. To distinguish between non-
selected (default) and selected time series, a basic line color is
used for non-selected series, such as black or white, depending
on the chosen color scheme.
Missing Time Series Values. To distinguish missing series
values from existing series values, we interpolate missing
values using a linear function based on their two nearest
existing values. Line segments containing interpolated values
are plotted with a dashed line style.
Time Series Starting & Ending Points. To contrast between
different incomplete series, we mark the starting and ending
points of each series. Specifically, starting points are indicated
with blue circles, and ending points with red squares.

Fig. 2 illustrates an example of our static visualization. The
figure clearly shows a collection of time series, with missing
values highlighted in interpolated line segments, plotted as
dashed lines. Note that the starting and ending points marked
by blue circles and red squares provide viewers density infor-
mation about where most series start and end.

B. User Interactions

Our interaction design allows users to select an area and
then respond with a set of time series representatives along
with time series they represent. For this purpose, we employ
two primary interactions: area selection and area modification.
Area Selection. Our area selection utilizes an interactive
timebox [20], where users can click and drag to select an area
in the line graph, as shown in Fig. 3 (left). The rectangular

Authorized licensed use limited to: Dolby Library. Downloaded on April 24,2025 at 08:09:17 UTC from IEEE Xplore. Restrictions apply.

843

Fig. 3. An example of user interactions with area selection and area modification. Upon moving selected area or changing its boundaries, time series
representatives are highlighted. When the movement is finished, represented time series are semi-highlighted.

selection is defined by four boundaries: left, right, top, and
bottom. A time series is considered selected if its sub-series
within the time interval of [left, right] falls within the range
[top, bottom]. In other words, a time series is selected if its
sub-series within the time interval is entirely contained within
the selected timebox. Interaction Response: when one or more
time series are selected, an LSH-based algorithm is executed to
choose a subset of these selected time series as representatives.
The algorithm, as described in Sec. IV-A, facilitate the quick
response of LIVE-ITS. These time series representatives are
highlighted with various colors to distinguish them from non-
selected time series. When the click event that triggers the
selection is released, time series similar to the time series rep-
resentatives are also highlighted with semi-transparent colors,
as shown in Fig. 3 (right).
Area Modification. If an area selection (timebox) already
exists, analysts can modify the area by moving the timebox
or adjusting its boundaries. Interaction Response: When the
timebox is moved or its boundaries are changed, the set
of selected time series gets updated, leading to changes in
the time series representatives. Time series similar to the
representatives will be highlighted upon click release event
to guarantee an efficient and responsive rendering.

IV. BACKEND ALGORITHMS

This section begins with a general problem formulation
of subset selection, which aims to choose a subset from a
source set to represent a target set. We then propose a greedy
algorithm and prove that it guarantees optimal subset selection.
In other words, our proposed greedy algorithm generates a
subset of time series representatives that covers as many time
series as possible. Our greedy algorithm relies on time series
partitioning; therefore, we propose using Locality-Sensitive
Hashing (LSH) for this purpose [10], [33]. We provide a
time complexity analysis to demonstrate the responsiveness
advantage of our LSH-based approach.

A. Time Series Subset Selection

Time series subset selection aims to select a subset S of at
most κ time series from a source set X = {X1, X2, . . . , XN}

to represent a target set Y = {Y1, Y2, . . . , YM}, where N =
|X| and M = |Y | denote the total number of time series in
X and Y , respectively. In our case, we also require that the
source set be a subset of the target set, as X ⊆ Y . Assume
that we have a non-overlapping partition of Y into K groups,
where each group contains highly similar time series. Let D ∈
{0, 1}K×M be a binary group membership matrix of Y , hence,

Dkm =

{
1, if k(th) group contains Ym

0, otherwise
(1)

By definition, each time series Ym appears in exactly one of
the K groups, which implies that each column of D sums to
1,

∑
k Dkm = 1, m ∈ {1, 2, . . . ,M}. Note that Y may have

outlier series, so it is not guaranteed that a subset of X will
represent all series in Y . In this case, we opt to select a subset
that represents as many series in Y as possible. Therefore,
we reorder the K partitioned groups of D from largest to
smallest group size, denoted by G = {G1, G2, . . . , GK} with
|G1| ≥ |G2| ≥ . . . ≥ |GK | and |G1|∪ |G2|∪ . . .∪|GK | = M .
Let S be initialized as an empty set S = {}. We iterate through
G1, G2, . . ., and for each group Gk, the set S is updated based
on the number of source series Gk contains,

S =

{
S, if |Gk ∩X| = 0.
S ∪ Repr (Gk) , if |Gk ∩X| ≥ 1.

(2)

where Repr (·) chooses a representative time series from the
group Gk. There are many eligible criteria for implementing
Repr (·). For example, using the centroid or median time series
can produce a good visualization. In our algorithm, we opt for
the time series Xi that has the minimum Euclidean distance
to all other time series, as defined below,

Repr (Gk) = argmin
Xi

∑
j

T∑
t=1

√(
Xt

i −Xt
j

)2
, Xj ∈ Gk (3)

The iteration stops once S reaches a user-defined number,
κ, of time series. A concise summary of the computational
procedure is outlined in Algorithm 1.

When a series from Gk is included in S, it represents all
other series in Gk. As a result, S contains at most κ series

Authorized licensed use limited to: Dolby Library. Downloaded on April 24,2025 at 08:09:17 UTC from IEEE Xplore. Restrictions apply.

844

Algorithm 1 Selecting a Representative Time-Series Subset
1: Input: K groups of time series G = {G1, G2, . . . , GK}

with |G1| ≥ |G2| ≥ . . . ≥ |GK |, a set of time series
representative candidates X , and a representative number
limit κ;

2: Initialize an empty set S = {}
3: for each group Gi, i = 1, 2, . . . do
4: if |Gk ∩X| ≥ 1 then
5: Repr (Gk)← argminXi

∑
j

∑T
t=1

√(
Xt

i −Xt
j

)2
6: S ← S ∪ Repr (Gk)
7: end if
8: if |S| = κ then
9: Exit the loop {Early stop}

10: end if
11: end for
12: Output: selected time series representatives S

from X that represent as many time series as possible from
Y . We prove by contradiction that S is the optimal subset.

Proof. Assume there exist two series Xi, Xj ∈ X , where
Xi ∈ S is selected and Xj ̸∈ S is not selected. By our
definition, Xi ∈ Gi represents all time series in Gi, and
Xj ∈ Gj represents all time series in Gj . We aim to prove
that Xi cannot be replaced by Xj to increase the number of
series represented by S.

To prove by contradiction, we first assume that Xj can
replace Xi to increase the number of represented series in S,
i.e., |Gi| < |Gj |, and then show that this assumption leads to a
contradiction. In Eq. 2, larger groups are ranked before smaller
groups. Hence, if the assumption stands, the set Gj will be
considered before Gi. On the one hand, if the subset size
limit κ is already reached before considering Gj , the series
Xi will not be added, as the iteration would stop before Gi

is considered. This contradicts the premise that Xi ∈ Gi is
selected. On the other hand, if the subset size limit has not
been reached, since Gj contains at least one series Xj ∈ X
from X , a representative series from Xj must be added to S
to represent Gj . Adding the series Xj to S would contradict
the premise that Xj ̸∈ S.

In conclusion, there is no pair of series Xi ∈ S and Xj /∈
S such that Xj can replace Xi to increase the number of
represented time series. Hence, S is an optimal subset of X
that represents the maximum number of time series from Y .

In LIVE-ITS, we define Y as all time series in the dataset,
and X as the selected time series within the timebox, or
equivalently, the selected area.

B. LSH-based Partitioning

This section introduces a fast and efficient partitioning
method for time series data, based on Locality-Sensitive Hash-
ing (LSH) [7], [45]. Let Y ∈ RM×T denote a collection of M
time series, each of length T . We leverage LSH to generate a

signature for each time series and then allocate time series with
identical signatures into the same bins. During the signature
generation phase, a random matrix Yrand ∈ [−1, 1]T×b

is created to transform the time series into b-dimensional
vectors Yb = YYrand ∈ RM×b. Here, b is a user-selected
parameter that controls the length of the signatures. The b-
dimensional vectors are then converted to signatures through
a sign function:

Ysig
ij =

{
1, if Yb

ij ≥ 0

0, otherwise
∈ RM×b (4)

Hence, there are at maximum 2b different signatures from
00 . . . 0︸ ︷︷ ︸
b−digits

to 11 . . . 1︸ ︷︷ ︸
b−digits

, each corresponding to a unique partition.

Missing Values. To mitigate the effects of missing values in
time series partitioning, we set time points with missing values
in Y to zeros, so they do not contribute to Yb. Alternatively,
using interpolated values is another option for grouping similar
time series.

V. TIME COMPLEXITY ANALYSIS

In this section, we analyze the time complexity of our
efficient LSH-based time series visualization. The time com-
plexity can be decomposed into three stages: partitioning,
querying, and visualization.
LSH partitioning stage. It takes O (Tb) to generate the
random matrix Yrand ∈ RT×b, O (MTb) to product the
time series matrix Y ∈ RM×T with the random matrix
Yrand ∈ RT×b, and O (Mb) to generate the signature matrix
Ysig ∈ RM×b. The overall time complexity for partitioning is

TCpartition = O (Tb) +O (MTb) +O (Mb) = O (MT)

with b being a small selected parameter denoting the length
of signatures, which can be considered a negligible constant.
Querying stage. We aim to select at most κ series from M
time series in X to represent as many series in Y (equivalently,
Y) as possible. Let K denote the number of unique partitioned
groups from the LSH partitioning stage. Recall that X ⊆ Y ,
hence, it takes O (1) to find which group a series Xi ∈ X
belongs to, as well as the size of the corresponding group.
Moreover, it takes O (MlogM) to sort M time series in
X based on their corresponding group size. As stated in
Sec. IV-A, we iterate the re-ordered M time series and their
groups, and construct the subset S using Eq. 2. If a group
has one time series from X , it takes O (1) to compute
S ∪ Repr (Gk). If a group has two or more time series from
X , it takes O (T |Gk|+ T) to compute S ∪Repr (Gk). Since∑

G |Gk| = M , it takes at most TCquery = O (MT) for each
query. This time complexity describes the worst-case scenario;
in practice, it is much faster due to the early stopping of the
query when |S| reaches the limit κ.
Visualization stage. For the static presentation, it takes
TCvisualization = O (NT) to plot all N time series, each
of length T .

Authorized licensed use limited to: Dolby Library. Downloaded on April 24,2025 at 08:09:17 UTC from IEEE Xplore. Restrictions apply.

845

Fig. 4. An example of seven time series from the seven distributions (left), and the resulting time series with the white noise (right), in the synthetic dataset.

TABLE I
A SUMMARY OF DATA STATISTICS.

Dataset #Series Min Median Max Missing Rate

SYNTHETIC 70k −3.56 0.10 4.77 0%
WIKIPEDIA 123k 0 88 9999 2.34%

The overall time complexity is

TCtotal = TCpartition +TCquery +TCvisualization

= O (MT) +O (MT) +O (NT)

= O (NT) (5)

with M < N . This is in theory the best time complexity any
algorithm can achieve as even storing and plotting all time
series in Y take at least O (NT).

VI. EXPERIMENTS

To validate the effectiveness and efficiency of our proposed
LIVE-ITS, we design a series of experiments using both a
synthetic dataset and a real-world dataset. With these datasets,
we aim to answer the following research questions:

a Does the LSH-based algorithm accurately partition sim-
ilar time series into the same bins? Or equivalently, are
time series in the partitioned bins similar to one another
within the same bin?

b What is the time-series coverage of the LSH-based
algorithm over the used datasets?

c What is the runtime performance of the proposed LIVE-
ITS system? Specifically, is it scalable to handle large-
scale time-series datasets?

Datasets. We utilize two datasets: the first dataset is a SYN-
THETIC dataset generated from seven different distributions,
including sine, cosine, linear, exponential, log, Gaussian, and
Poisson. We carefully select involved parameters of each
distribution function, such as offset, scale, and variance, to
ensure that the resulting time series are within a similar range.

Moreover, we follow existing practices by adding Gaussian
white noise to these base functions [18], [21], [47]. Fig. 4
shows an example of seven generated time series, each derived
from one of the seven distributions below,

y (t) = T (t) + ϵ (6)

where T is generated from one of the seven base functions and
ϵ denotes the white noise component sampled from a Gaussian
distribution N (µ = 0, σ = 0.1):

T (t) =

Sin : sin (t)

Cos : cos (t)

Linear : t− π

Gaussian : N (µ = π, σ = 1)

Log : ln (t+ 0.01) + 2

Exponential : 0.01 ∗ e(t) − 1

Poisson : e−0.1∗0.1t
t!

We generate 10, 000 time series from each base function in
the domain of t ∈ [0, 2π], resulting in a total of 70, 000 time
series. Time series are sampled to include 1, 000 time points.

The second dataset is a real-world dataset called
WIKIPEDIA, which consists of web traffic data [34]. The
dataset contains more than 140, 000 time series of Wikipedia
website views over a span of one and a half years. We
concentrate on the data from the first month and remove time
series with only missing values or those with large values,
resulting in a total of 123, 085 time series. A summary of the
data statistics is presented in Table I.

A. Partitioning Accuracy

To answer research question (a), i.e., to validate the accuracy
of the LSH-based algorithm, we apply the algorithm to the
SYNTHETIC dataset. The algorithms generates bins of similar
time series. As a reminder, the dataset contains 10, 000 time
series from each of the seven distributions.

Authorized licensed use limited to: Dolby Library. Downloaded on April 24,2025 at 08:09:17 UTC from IEEE Xplore. Restrictions apply.

846

Fig. 5. Time-series coverage of the top κ ∈ {1, 2, 4, 8} bins on various LSH
signature length b ∈ [5, 30]. The time-series coverage has a decreasing trend
as the LSH signature length b increases.

Ideally, time series from the same distribution function
should be assigned to the same bins. In other words, the purer
each bin is, the more accurate the partitioning results will be.
To evaluate the partitioning accuracy, we compute the overall
entropy loss of all bins as a linear combination of the entropy
loss from each bin, according to their sizes:

Loss =

2b∑
i=1

1

|Bi|
entropy (Bi) (7)

where B = {B1, B2, . . . , B2b} denotes the set of 2b bins.
entropy (·) denotes the entropy loss function, and is computed
for each bin Bi:

entropy (Bi) = −
∑
j

qij log2 qij (8)

where qij denotes the label percentage of j(th) distribution.
We compute the Loss value of the LSH-based algorithm

on the SYNTHETIC dataset, which yields a value of 0.35%.
This value is very close to zero, indicating the high purity of
most bins and demonstrating the accuracy of the LSH-based
partition algorithm.

B. Time-series Coverage

To answer research question (b), we investigate the time-
series coverage of LIVE-ITS, defined as the proportion of
selected time series relative to the total number of time
series. We apply the partition algorithm to the WIKIPEDIA
dataset, which contains 123, 085 time series. We vary the LSH
signature length parameter b from 5 to 30. For each value of b,
we compute the time-series coverage for the largest κ groups,
where κ ∈ {1, 2, 4, 8}. Fig. 5 illustrates the resulting time
series coverage.

Notably, as the LSH signature length b increases, the time-
series coverage has a decreasing trend. This is because a larger
b leads to a more refined grouping and separation of time

TABLE II
RESPONSE TIME OF LIVE-ITS ON DATASETS OF VARIOUS SIZES.

#Time series
Mean ± Std. Time (ms)

Backend Loading Frontend Rendering

1, 000 15± 5.4 13.7± 3.0
2, 000 26± 6.5 22.1± 4.3
4, 000 51± 9.5 45.3± 7.7
8, 000 95± 8.5 90.9± 30.9

16, 000 271± 9.9 223.8± 34.7
32, 000 872± 54.0 502.7± 56.0
64, 000 3.1s± 73.1 1065.8± 128.9
123, 085 10.5s± 47.9 2027.8± 247.8

Fig. 6. The response time of LIVE-ITS on datasets of various sizes. Both
backend loading and frontend rendering time are efficiently linear to the
number of time series.

series. Another observation is that the time-series coverage
of the largest group remains dominantly large, as indicated
by the blue line in the figure. Meanwhile, the second to the
eighth largest groups do not contribute as much coverage. This
reflects the fact that most website traffic time series in the
Wikipedia dataset are highly similar to one another.

C. Efficiency Performance

To answer research question (c), we evaluate the efficiency
of LIVE-ITS by measuring the response time across datasets
of various sizes. Specifically, we measure the backend loading
time and the frontend rendering time on datasets ranging
from 1, 000 time series to 123, 085 time series, with an
exponentially increasing step of 2×.

The backend loading time is defined as the time Python
takes to load the time series data files. The frontend rendering
time is measured as the duration between the start of an
interaction (such as area selection or modification) and the
completion of time-series plotting.

Authorized licensed use limited to: Dolby Library. Downloaded on April 24,2025 at 08:09:17 UTC from IEEE Xplore. Restrictions apply.

847

Fig. 7. Step 1 of 5: Initial rendering of LIVE-ITS, where a static presentation
of time-series is exhibited.

Fig. 8. Step 2 of 5: Initial response upon query, where a default number
(κ = 5) of time series groups are highlighted.

We repeat 10 trials for each experiment and report the mean
and the standard deviation of response time, as shown in
Table II and Fig. 6. We observe that both the backend loading
time and the frontend rendering time are steadily proportional
to the dataset size, exhibiting the linear time complexity.

We also notice that the frontend rendering time is faster than
the backend loading time, and scales better to the growth of
the datasets, which proves the scalability of the visualization.
Machine Specifications. All experiments are conducted on the
backend of a gunicorn web server with 10 workers, as well
as within the npm production environment. By default, the
LSH signature length is set to 10, and the number of shown
time-series representatives is set to 5.

The machine specifications include a 12-cores CPU and
18GB of memory on a Mac15.6 model equipped with the
Apple M3 Pro chip. Our interaction system is implemented
using d3.js, node.js, React, and Flask [14]. We also utilize a
Docker environment to support the package management.

VII. CASE STUDY

In this section, we conduct a case study to demonstrate
how LIVE-ITS can be used in a realistic scenario. We render

Fig. 9. Step 3 of 5: Response after setting κ = 1, where the most
representative time series group is highlighted.

Fig. 10. Step 4 of 5: Response after setting b = 23, where the most
representative time series group is re-calculated base on the LSH algorithm,
giving ideal results.

16, 000 time series over two months of Wikipedia traffic data.
Fig. 7 shows the static presentation. As mentioned earlier, we
allow users to control two parameters: the number of time
series representatives, κ, and the LSH signature length, b.

To identify representative time series, an analyst may select
an area of interests by creating a timebox on the line plot,
as shown in Fig. 8. However, the visualization is difficult to
interpret, with too many highlighted time series overlapping
one another. This occurs because the parameter κ is set too
high, with a default value of 5.

The analyst can then interact with LIVE-ITS and reduce
κ to 1 to investigate the most dominant time series patterns,
which results in Fig. 9. However, the resulting visualization
is still not ideal due to the lack of clear dominant time series
patterns. In other words, dissimilar time series appear to be
grouped into the largest bin. To address this, the analyst can
increase the LSH signature length b to restrict each bin to
grouping only more similar time series.

For example, after setting b = 23, the resulting visualization
exhibits intuitive time series seasonality, as shown in Fig. 10.
The analyst can further investigate related information about

Authorized licensed use limited to: Dolby Library. Downloaded on April 24,2025 at 08:09:17 UTC from IEEE Xplore. Restrictions apply.

848

Fig. 11. Step 5 of 5: Response after setting κ = 2, where the secondary most representative group is also highlighted.

the selected time series. In our dataset, each time series is
associated with a web page. We find that most highlighted
time series correspond to connected celebrities.

Furthermore, the analyst can validate whether the second
largest group exhibits a different time series pattern by in-
creasing κ and adjusting the timebox, as shown in Fig. 11.

VIII. CONCLUSION

In this paper, we address the task of time series visual-
ization. We propose a novel time series interaction explorer
called LIVE-ITS to tackle existing challenges of visualizing
large-scale incomplete time-series data. Theoretical proof is
provided to demonstrate that LIVE-ITS yields an optimal
subset containing the most representative time series, with the
best possible time complexity.

To evaluate the effectiveness of LIVE-ITS, we design a
series of experiments to test its partitioning accuracy and
time-series coverage. Moreover, we assess the scalability of
LIVE-ITS by applying it to datasets of various sizes. The
results demonstrate that our system exhibits runtime growth
proportional to the number of time series. A case study is
also conducted to showcase the use of LIVE-ITS.

In the future, We plan to extend this work to enable more
comprehensive time series analyses and empirical applications,
including time series labelling and clustering. Additionally,
LIVE-ITS can be customized with various features and func-
tions to accommodate the diverse needs of analysts, such as
the manual addition and removal of specific time series, and
the presentation of relevant information through a tooltip or

other widgets. We also aim to explore alternative methods for
managing missing time points. With the capacities of LIVE-
ITS, we anticipate it will prove valuable to analysts working
with incomplete large-scale time series data.

REFERENCES

[1] Muhammad Adnan, Mike Just, and Lynne Baillie. Investigating time
series visualisations to improve the user experience. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems,
pages 5444–5455, 2016.

[2] Wolfgang Aigner, Silvia Miksch, Wolfgang Müller, Heidrun Schumann,
and Christian Tominski. Visual methods for analyzing time-oriented
data. IEEE transactions on visualization and computer graphics,
14(1):47–60, 2007.

[3] Wolfgang Aigner, Silvia Miksch, Heidrun Schumann, and Christian
Tominski. Visualization of time-oriented data, volume 4. Springer, 2011.

[4] Aws Naser Jaber Al. Efficient visualization framework for real-time
monitoring network traffic of high-speed networks. In 2021 IEEE
International Conference on Big Data (Big Data), pages 5839–5842.
IEEE, 2021.

[5] Danielle Albers, Michael Correll, and Michael Gleicher. Task-driven
evaluation of aggregation in time series visualization. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
pages 551–560, 2014.

[6] Daniel Braun, Rita Borgo, Max Sondag, and Tatiana von Landesberger.
Reclaiming the horizon: Novel visualization designs for time-series
data with large value ranges. IEEE Transactions on Visualization and
Computer Graphics, 2023.

[7] Hongjie Chen, Ryan Rossi, Sungchul Kim, Kanak Mahadik, and Hoda
Eldardiry. Evolving super graph neural networks for large-scale time-
series forecasting. In Pacific-Asia Conference on Knowledge Discovery
and Data Mining, pages 201–212. Springer, 2024.

[8] Myoungsu Cho, Bohyoung Kim, Hee-Joon Bae, and Jinwook Seo.
Stroscope: Multi-scale visualization of irregularly measured time-series
data. IEEE transactions on visualization and computer graphics,
20(5):808–821, 2014.

Authorized licensed use limited to: Dolby Library. Downloaded on April 24,2025 at 08:09:17 UTC from IEEE Xplore. Restrictions apply.

849

[9] Michael Correll, Danielle Albers, Steven Franconeri, and Michael Gle-
icher. Comparing averages in time series data. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages
1095–1104, 2012.

[10] Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. Fast locality-
sensitive hashing. In Proceedings of the 17th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages
1073–1081, 2011.

[11] Zikun Deng, Shifu Chen, Tobias Schreck, Dazhen Deng, Tan Tang,
Mingliang Xu, Di Weng, and Yingcai Wu. Visualizing large-scale spatial
time series with geochron. IEEE Transactions on Visualization and
Computer Graphics, 2023.

[12] Ehsan Elhamifar and M De Paolis Kaluza. Subset selection and
summarization in sequential data. Advances in Neural Information
Processing Systems, 30, 2017.

[13] Ehsan Elhamifar, Guillermo Sapiro, and S Shankar Sastry. Dissimilarity-
based sparse subset selection. IEEE transactions on pattern analysis and
machine intelligence, 38(11):2182–2197, 2015.

[14] Loraine Franke and Daniel Haehn. Modern scientific visualizations on
the web. In Informatics, volume 7, page 37. MDPI, 2020.

[15] Manele Ait Habouche, Mickaël Kerboeuf, Goulven Guillou, and Jean-
Philippe Babau. Fast: An efficient framework for visualizing large-scale
time series. In 2022 IEEE International Conference on Big Data (Big
Data), pages 3745–3754. IEEE, 2022.

[16] Dongyun Han and Isaac Cho. Interactive visualization for smart power
grid efficiency and outage exploration. In 2023 IEEE International
Conference on Big Data (BigData), pages 656–661. IEEE, 2023.

[17] Hussein Hazimeh and Rahul Mazumder. Fast best subset selection:
Coordinate descent and local combinatorial optimization algorithms.
Operations Research, 68(5):1517–1537, 2020.

[18] Jeffrey Heer, Nicholas Kong, and Maneesh Agrawala. Sizing the
horizon: the effects of chart size and layering on the graphical perception
of time series visualizations. In Proceedings of the SIGCHI conference
on human factors in computing systems, pages 1303–1312, 2009.

[19] Andrew Hill, Russell Bowler, Katerina Kechris, and Farnoush Banaei-
Kashani. Semi-supervised embedding for scalable and accurate time
series clustering. In 2022 IEEE International Conference on Big Data
(Big Data), pages 942–951. IEEE, 2022.

[20] Harry Hochheiser and Ben Shneiderman. Dynamic query tools for time
series data sets: timebox widgets for interactive exploration. Information
Visualization, 3(1):1–18, 2004.

[21] Waqas Javed, Bryan McDonnel, and Niklas Elmqvist. Graphical per-
ception of multiple time series. IEEE transactions on visualization and
computer graphics, 16(6):927–934, 2010.

[22] Robert Kincaid and Heidi Lam. Line graph explorer: scalable display
of line graphs using focus+ context. In Proceedings of the working
conference on Advanced visual interfaces, pages 404–411, 2006.

[23] Nitin Kumar, Venkata Nishanth Lolla, Eamonn Keogh, Stefano Lonardi,
Chotirat Ann Ratanamahatana, and Li Wei. Time-series bitmaps: a
practical visualization tool for working with large time series databases.
In Proceedings of the 2005 SIAM international conference on data
mining, pages 531–535. SIAM, 2005.

[24] Xiaosheng Li, Jessica Lin, and Liang Zhao. Time series clustering
in linear time complexity. Data Mining and Knowledge Discovery,
35(6):2369–2388, 2021.

[25] Zekun Li, Shiyang Li, and Xifeng Yan. Time series as images: Vision
transformer for irregularly sampled time series. Advances in Neural
Information Processing Systems, 36, 2024.

[26] T Warren Liao. Clustering of time series data—a survey. Pattern
recognition, 38(11):1857–1874, 2005.

[27] Jessica Lin, Eamonn Keogh, Stefano Lonardi, Jeffrey P Lankford, and
Donna M Nystrom. Visually mining and monitoring massive time series.
In Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 460–469, 2004.

[28] Lauro Lins, James T Klosowski, and Carlos Scheidegger. Nanocubes
for real-time exploration of spatiotemporal datasets. IEEE Transactions
on Visualization and Computer Graphics, 19(12):2456–2465, 2013.

[29] Shawn Martin and Tu-Toan Quach. Interactive visualization of mul-
tivariate time series data. In Foundations of Augmented Cognition:
Neuroergonomics and Operational Neuroscience: 10th International
Conference, AC 2016, Held as Part of HCI International 2016, Toronto,
ON, Canada, July 17-22, 2016, Proceedings, Part II 10, pages 322–332.
Springer, 2016.

[30] Peter McLachlan, Tamara Munzner, Eleftherios Koutsofios, and Stephen
North. Liverac: interactive visual exploration of system management
time-series data. In Proceedings of the SIGCHI conference on human
factors in computing systems, pages 1483–1492, 2008.

[31] Fabio Miranda, Marcos Lage, Harish Doraiswamy, Charlie Mydlarz,
Justin Salamon, Yitzchak Lockerman, Juliana Freire, and Claudio T
Silva. Time lattice: A data structure for the interactive visual analysis
of large time series. In Computer Graphics Forum, volume 37, pages
23–35. Wiley Online Library, 2018.

[32] Margaret Mitchell, Dylan Baker, Nyalleng Moorosi, Emily Denton,
Ben Hutchinson, Alex Hanna, Timnit Gebru, and Jamie Morgenstern.
Diversity and inclusion metrics in subset selection. In Proceedings of
the AAAI/ACM Conference on AI, Ethics, and Society, pages 117–123,
2020.

[33] Loı̈c Paulevé, Hervé Jégou, and Laurent Amsaleg. Locality sensitive
hashing: A comparison of hash function types and querying mechanisms.
Pattern recognition letters, 31(11):1348–1358, 2010.

[34] Navyasree Petluri and Eyhab Al-Masri. Web traffic prediction of
wikipedia pages. In 2018 IEEE International Conference on Big Data
(Big Data), pages 5427–5429. IEEE, 2018.

[35] Stijn J Rotman, Boris Cule, and Len Feremans. Efficiently mining
frequent representative motifs in large collections of time series. In
2023 IEEE International Conference on Big Data (BigData), pages 66–
75. IEEE, 2023.

[36] Conglei Shi, Weiwei Cui, Shixia Liu, Panpan Xu, Wei Chen, and
Huamin Qu. Rankexplorer: Visualization of ranking changes in large
time series data. IEEE Transactions on Visualization and Computer
Graphics, 18(12):2669–2678, 2012.

[37] Luka Stopar, Primoz Skraba, Marko Grobelnik, and Dunja Mladenic.
Streamstory: exploring multivariate time series on multiple scales. IEEE
transactions on visualization and computer graphics, 25(4):1788–1802,
2018.

[38] Ryan Thompson. Robust subset selection. Computational Statistics &
Data Analysis, 169:107415, 2022.

[39] Sandhya Tripathi, N Hemachandra, and Prashant Trivedi. Interpretable
feature subset selection: A shapley value based approach. In 2020 IEEE
International Conference on Big Data (Big Data), pages 5463–5472.
IEEE, 2020.

[40] Yumiko Uchida and Takayuki Itoh. A visualization and level-of-
detail control technique for large scale time series data. In 2009 13th
International Conference Information Visualisation, pages 80–85. IEEE,
2009.

[41] Jonas Van Der Donckt, Jeroen Van Der Donckt, Emiel Deprost, and
Sofie Van Hoecke. Plotly-resampler: Effective visual analytics for large
time series. In 2022 IEEE Visualization and Visual Analytics (VIS),
pages 21–25. IEEE, 2022.

[42] James Walker, Rita Borgo, and Mark W Jones. Timenotes: a study
on effective chart visualization and interaction techniques for time-
series data. IEEE transactions on visualization and computer graphics,
22(1):549–558, 2015.

[43] Kiyoung Yang, Hyunjin Yoon, and Cyrus Shahabi. A supervised feature
subset selection technique for multivariate time series. In Proceedings of
the workshop on feature selection for data mining: Interfacing machine
learning with statistics, pages 92–101. Citeseer, 2005.

[44] Matthew Young, Sangmi Pallickara, and Shrideep Pallickara. Aqua:
A framework for spatiotemporal analysis and visualizations of water
quality data at scale. In 2023 IEEE International Conference on Big
Data (BigData), pages 1555–1562. IEEE, 2023.

[45] Yuncong Yu, Dylan Kruyff, Jiao Jiao, Tim Becker, and Michael
Behrisch. Pseudo: Interactive pattern search in multivariate time series
with locality-sensitive hashing and relevance feedback. IEEE Transac-
tions on Visualization and Computer Graphics, 29(1):33–42, 2022.

[46] Xuchao Zhang, Yifeng Gao, Jessica Lin, and Chang-Tien Lu. Tapnet:
Multivariate time series classification with attentional prototypical net-
work. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pages 6845–6852, 2020.

[47] Yue Zhao, Yunhai Wang, Jian Zhang, Chi-Wing Fu, Mingliang Xu, and
Dominik Moritz. Kd-box: Line-segment-based kd-tree for interactive
exploration of large-scale time-series data. IEEE Transactions on
Visualization and Computer Graphics, 28(1):890–900, 2021.

[48] Xiaobin Zhi and Yigang Qi. An improved dissimilarity-based sparse
subset selection algorithm. In 2022 4th International Conference on
Natural Language Processing (ICNLP), pages 611–615. IEEE, 2022.

Authorized licensed use limited to: Dolby Library. Downloaded on April 24,2025 at 08:09:17 UTC from IEEE Xplore. Restrictions apply.

