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ABSTRACT
Banners are present in several forms and a person might be in-
spired by one or more of these. However, designing banners is
a non-trivial task, especially for novices. Starting from a blank
canvas can often be overwhelming, and exploring alternatives is
time-consuming. In this paper, we propose an automatic approach
to transfer a novice user’s content into an example banner. Our
algorithm begins with extracting the template of the example ban-
ner via a semantic segmentation approach. This is followed by an
energy-based optimization framework to combine multiple design
elements and arrive at an optimal layout. A crowd-sourced experi-
ment comparing our automatic results against banners designed by
creative professionals indicates the viability of the proposed work.

CCS CONCEPTS
• Applied computing → Graphics recognition and interpre-
tation; • Human-centered computing→ HCI design and evalu-
ation methods;
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style transfer, single page graphic design, banner design, design
automation

ACM Reference Format:
Paridhi Maheshwari, Nitish Bansal, Surya Dwivedi, Rohan Kumar, Pranav
Manerikar, and Balaji Vasan Srinivasan. 2019. Exemplar Based Experience
Transfer. In 24th International Conference on Intelligent User Interfaces (IUI
’19), March 17–20, 2019, Marina del Rey, CA, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3301275.3302300

1 INTRODUCTION
In the digital era, there exists a plethora of designs and banners in
the form of flyers, advertisements, hoardings etc. These banners
have become important means of visual communication to mass
audiences. Designing and refining banners requires conveying the
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content in a succinct and visually pleasing manner. This is a non-
trivial task even for experienced designers and creating banners
from scratch is a time-consuming process. The traditional approach
is to leverage existing designs as building blocks to develop new
ones. Therefore, creative professionals often use curated example
galleries that serve as inspirations for designing alternatives [7, 13].

Given the ubiquitous nature of such designs, a novice user might
be inspired by the designs of banners they interact with and would
want to use them with their own content. However, this becomes a
tedious task if the corresponding template is unavailable. Even if the
template is available, transforming them based on his content while
simultaneously satisfying aesthetic intent requires professional
skills that involve an understanding of the factors that contribute to
banner aesthetics. In the absence of appropriate automation tools,
such processes are quite challenging for novices.1

In this paper, we propose a two-fold technique to automate the
transfer of user’s content into the design(s) of exemplar banner(s).
The proposed algorithm extracts the design template by performing
a semantic segmentation of the input banner image. These segments
are then used to identify the underlying design elements (such as the
image/text/shape placeholder locations, size, etc.) using a region-
based clustering approach yielding an editable template where
the user can insert his content to achieve the experience transfer.
The final step of our algorithm is to identify the salient aspects
of a banner from a set of sample corpus and utilize them to fine
tune the layout for better overall aesthetics via an energy-based
optimization.

2 RELATEDWORK
One line of work that is relevant to our problem deals with ex-
tracting templates from images. Betramelli et al. [4] is aimed at
extracting templates of interfaces from its screenshots using an
RNN-based architecture. However, their approach was restricted
to simpler interfaces with lesser degrees of freedom and obtains
only approximate estimates of the elements’ locations. To be able
to produce an editable template, accurate locations of all design
elements of the banner is required.

Closely related to template extraction are works on segmenta-
tion and object detection. Semantic segmentation is the task of
classifying each pixel of an image into various types/categories.
Long et al. [20] proposed Fully Convolutional Neural Networks
(FCNN) for semantic segmentation and showed that convolutional

1Work done when authors were at Adobe Research

673

https://doi.org/10.1145/3301275.3302300
https://doi.org/10.1145/3301275.3302300


IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA P. Maheshwari et al.

networks trained end-to-end exceed the state-of-the-art in seman-
tic segmentation. Semantic segmentation, however, is limited to
identifying the semantics of the image at a pixel level and does not
directly yield templates requiring additional processing to extract
design element information from the identified segments. Object
detection algorithms, on the other hand, directly yield bounding
boxes and can be useful in finding the locations of the detected
design elements. Notable works in object detection include Regions
with CNN features [12], its variants like Fast R-CNN [10], Faster
R-CNN [26], Mask R-CNN [12] and R2CNN [16]. Mask R-CNN [12]
first identifies the semantic regions of various objects followed by
identifying the bounding boxes (masks) corresponding to these
regions. Due to the recent successes of the Mask R-CNN and FCNN
frameworks as strong baselines in segmentation and detection tasks,
we explore both these frameworks for extracting the templates of
banners.

Another line of related works involve optimization of layouts.
A growing body of recent work focuses on automating this process
in the context of website and documents. Bricolage [17] automates
the website creation process by transforming the content of one
webpage into the style and layout of another. This is achieved by cre-
ating correspondences between the Document Object Model (DOM)
elements of two webpages. Such a technique cannot be employed
for banners due to the absence of a DOM tree structure. In interface
designing, Gajos et al. [9] specify the positions and categories of
widgets and use a margin-based approach to set weights of the ob-
jective functions to learn model parameters. Swearngin et al. [27]
introduce Rewire, a system that automatically reconstructs vector
representations from screenshots of interfaces and leverages them
to provide assistance to designers in creating new designs. Their
reconstruction process involves low-level image processing based
on UI-specific techniques and can not be generalized. Todi et al. [28]
propose a layout restructuring of websites to make it more familiar
to users and aid navigation. Adaptive layouts for documents have
used grid-based templates for individual elements [14], probabilis-
tic models for document composition [8] and genetic algorithm
framework to personalize documents [25]. However, they deal with
simple documents primarily involving text that support a linear
read-order and easily conform to templates. Banners, however, are
less structured and composed of free-form placement of text and
image elements. Such semantic and structural differences between
banners and the experience synthesized in these explorations make
these approaches not trivially extendable for banner re-purposing.

The sub-field of layout problem most similar to our problem is
the optimization of single-page graphic designs. Early works
in this domain was automatic designing of magazine covers by
analyzing visual saliency of photographs to position text [15]. A
common approach in layout structuring is to define measures of
aesthetic requirements and optimize layouts to minimize these
measures. Various energy functions to quantify alignment of docu-
ments [2, 3], visual weight and balance of layouts [19], aesthetics
of interfaces [22] and heuristics like balance and uniformity of doc-
uments [11] have been put forth. Vollick et al. [29] proposed an
energy-based approach to model layouts of labels in technical dia-
grams. Non-linear inverse optimization [18] have been commonly
explored to learn model parameters from training data. Label lay-
out, however, is a relatively simpler problem where text elements

are distributed around a background image. Zhang et al. [32] pro-
posed techniques to automatically generate banners of different
sizes adhering to learned style parameters. But they primarily work
on reflowing the banner content into different sizes and do not deal
with optimization for news content. Along these lines, Donovan
et al. [24] introduced an energy-based model derived from design
principles to synthesize different versions of single-page graphic
designs and have extended their method to a user-interactive mode
[23]. We deploy the energy-based framework of [24] for defining
energy functions in the context of banners and optimizing elements
from multiple banners into a single layout.

3 EXEMPLAR BASED EXPERIENCE
TRANSFER

Our proposed algorithm of transferring a user’s target experience
into an exemplar banner consists of two key steps. The underlying
design elements (text boxes, shapes and images) are first extracted
from the banner images to build an editable template where the
user can add his own content. For this, we explore two alternate
configurations. The first configuration is based on an initial semantic
segmentation of the banner image into salient regions via a fully
convolutional neural network (FCNN) [20] followed by utilizing
the segmentation to extract key design elements. Our alternative
configuration employs the Mask R-CNN [12] framework to extract
the key elements in the input banner. Similar to FCNN, Mask R-
CNN starts with a Region Proposal Network that segments the
different regions in the input. In addition to identifying the class of
each region, the Mask R-CNN also identifies the bounding boxes
for the identified region, thus yielding the design elements directly.
Both these configurations facilitate the extraction of the underlying
template of the banner image and enable replication of an exemplar
banner with different content.

Once the template is extracted, it is possible to insert the user
content into the template by matching the type of content (image
to image fields, and so on). However, since the content is different,
it might result in misalignment and overflows thus affecting the
overall aesthetics of the banners. To address this, the second step
of our algorithm tunes the content-filled-elements to produce a
banner that satisfies various aesthetic goals. We formulate this as
an optimization problem where a set of energy functions are intro-
duced to quantify the aesthetics of a template. The energy functions
are smoothed and a weighted sum is used towards defining the
overall ‘goodness’ of a banner. The weights of the energy functions
are learned via a non-linear optimization [18] based on the corpus
of exemplar banners. The energy function thus learned is used in a
simulated annealing setup to optimize the new layout of the banner
with replaced content. Figure 3 shows the complete schematic of
the sequence of steps in the proposed framework.

4 TEMPLATE EXTRACTION
Given an image of the banner, template extraction identifies the
design elements of the banner along with their positional details
that can be used to transfer the user’s content into the banner. We
explore two state-of-the-art frameworks in image segmentation
(Fully Convolutional Neural Networks) and object detection (Mask
R-CNN) for identifying the elements of the input banners.
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Figure 1: Schematic of the proposed approach

4.1 Fully Convolutional Neural Network
(FCNN)

Unlike a fully-connected network, FCNN is capable of retaining
spatial information and can easily extend to inputs of arbitrary
sizes. FCNN layers are of the form,

yi j = fks
(
{xsi+δi ,sj+δj }0≤δi ,δj ≤k

)
Where x is the input to the corresponding layer and y is the output
of the layer, k is the kernel size and s is the stride/subsampling
factor. fks determines the type of the layer. fks could be matrix
multiplication for convolution, or average pooling and spatial max
for max pooling, or an element-wise nonlinear function for activa-
tion, depending on the type of the layer. The end-to-end network
is optimized to minimize the pixel-wise cross-entropy loss between
the input banner and the corresponding output annotation.

To accurately represent the design elements, the extracted tem-
plate should specify the rectangular bounding box for each of the
elements. Since the output of FCNN does not directly yield this, the
semantic segmentation output is processed to extract the bounding
boxes for each identified element. Moreover, the layout of banners
may have overlapping elements (for example, text on top of shape)
while semantic segmentation assigns a single label to each pixel.
We, therefore, devise a mechanism based on connected components
to process the segmentation output and extract the exact position,
size and other meta details of the underlying design elements.

From every segmented pixel, we deploy a Depth-First Search
(DFS) around its neighbourhood to identify a bounding box for
the corresponding design element encompassing the current pixel.
Since the bounding box search does not limit the selection of a
pixel in multiple elements, this allows for overlapping elements
to be identified. Bounding boxes less than a threshold (in size)
were rejected to control the noise in semantic segmentation. The
algorithm outputs a set of elements in the banner along with the
respective bounding boxes and location, yielding the final template
with the required layout information. Algorithm 1 summarizes the
sequence of steps to extract the template from the semantically
segmented banners.

4.2 Mask Region-based Convolutional Neural
Network

The Mask Region-based Convolutional Neural Network (Mask R-
CNN) [12] extends from Faster Region-based Convolutional Neural
Network [26] and adds an additional branch for predicting segmen-
tation ‘masks’ on every region of interest (RoI), along with classify-
ing the region. The mask layer is based on a Fully Convolutional

Algorithm 1 Design Element Extract
Input I = Image output of semantic segmentation
Initialize L = ∅

while there is an unvisited pixel do
Run DFS from the unvisited pixel N to find a connected com-

ponent C
Maintain the 4 points of C closest to the 4 corners of I in Box

while running DFS
L.append(Box)

Filter L based on region size
return L

Neural Network applied to each RoI, predicting the segmentation
mask in a pixel-to-pixel manner. Thus, Mask R-CNN yields the
bounding boxes for every identified segment and unlike FCNN, ad-
ditional processing is not required to extract these boxes. To allow
for overlapping elements, we followed [12] to independently clas-
sify themasks for each identified regions. Further, Mask R-CNN also
decouples the mask-identification from the region classification,
resulting in smoother masks (and hence bounding boxes).

4.3 Evaluating Template Extraction
In order to train our frameworks, we used a dataset of∼ 140k banner
images that range over a wide variety of topics and styles created
by non-expert users of a design software. Every banner has an
associated manifest file that includes information about the design
elements in the banner, their position and orientation in the banner,
and other meta-data like font type and font size for text descriptions
and colour for shapes. Although there are various components in
a banner, we specifically focus on modelling the layout, i.e, the
positions and scales of different design elements. To train the FCNN
andMask R-CNNmodels, we process themanifest files and generate
pixel-wise ground truth annotations for the banners by marking
various regions of the banners. The dataset is divided in train (80%),
validation (10%) and test (10%) sets.

Figure 2: Sample banner from our dataset and its manifest
file

Table 1 shows the performance of the various frameworks on
our dataset. The FCNN based model outperforms the other settings
in overall segmentation. However, since the plain FCNN model
only computes the pixel-wise segmentation, it cannot be directly
used as an editable template. For template extraction, it can be
seen that the FCNN segmentation followed by the region-based
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Figure 3: Example depicting the layout extraction framework (a) Input image (b) Semantic segmentation output (c) Design
element extraction (d) Ground truth annotation (e) Transformation with user content

clustering via DFS outperforms the Mask R-CNN setting in terms of
F1 scores although the accuracy scores are comparable between the
two settings. This is perhaps due to the superior ability of FCNN
in identifying the regions than the Mask R-CNN cascading to the
template extraction.

Accuracy F1 Score

FCNN 0.83 0.61
FCNN + Template Extraction 0.80 0.58

Mask R-CNN 0.79 0.50

Table 1: Results of template extraction

Fig 3 shows the output from various stages in our template ex-
traction and how an experience can be synthesized by transferring
new content into the exemplar banners. While we have not consid-
ered extracting the font style here, existing work like [30] can easily
be incorporated into our framework to recognize and transfer font
styles from sample banners.

5 ENERGY-BASED OPTIMIZATION
While the element extraction yields the underlying templates for
input banners, adding user’s content in these template can off-
set the underlying design. This calls for a way to fine-tune the
content-transferred banner. We extend the energy-based optimiza-
tion framework of [24] for fine tuning the layouts. The framework
optimizes a non-linear energy function that encapsulates various
aspects of design via simulated annealing. We extended various
energy functions from [24] for our purpose and learn their combi-
nation via a non-linear hyperparameter optimization [5] based on
the samples in our corpus.

5.1 Energy Functions
Peter et al. [24] define a set of energy functions to measure the
goodness of a layout on various dimensions. We adapt different
components of these energy functions Ei for our problem. The com-
posite energy function’s hyperparameters θ comprises of [w,α]. w
are the weights given to different energy functions in the weighted
sum that yields the final energy. Each component energy function is
smoothed via a sigmoid function S(·;α) to map it to a value between
0 and 1. The parameter α is used to smoothen the sigmoid function
and determine how the changes in energy should be mapped be-
tween 0 and 1. A smaller value of α makes the sigmoid function

smoother, whereas a larger value takes it closer to a step function.
Fig. 4 shows the mapping for different α values. The overall energy
of a layout is given by a weighted sum of individual energies,

E(X;θ ) =
∑
i
wiEi (X;αi ).

The hyperparametersw,α are learned via a non-linear optimization
as described in the next sub-section. Here, we outline the different
terms that constitute our energy.
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Figure 4: Sigmoid function mapping for different α

Correct alignment is an important aspect that portrays an or-
ganized representation, which in turn adds to the aesthetic value.
We considered Left, Right, X-center, Y-center and Bottom alignments,
which are depicted in Figure 5. The design elements of typical ban-
ners can be grouped such that the elements within a group are
aligned together. The alignment energy term measures the fraction
of element pairs that can be bracketed together under the same
alignment type,

Eaaliдn = −S

(
1
n2

∑
i ∈(all)

( ∑
j ∈(all)

Iai j

)
;αaaliдn

)
where n denotes the total number of elements, Iai j indicates if ele-
ments i and j are aligned by type a.

The group energy encourages aligned element pairs to be clus-
tered together under a common type of alignment. This promotes
symmetry in the banner and is visually appealing.

Eaдroup = −S

(
1
nm

∑
д

∑
i ∈(all)

I iд ;α
a
дroup

)
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Left Alignment Right AlignmentX-center Alignment

Y-center AlignmentBottom Alignment

Figure 5: Types of alignments considered

where n andm are the number of elements and alignment groups
respectively and I iд indicates if element i belongs to alignment group
д.

Minormisalignment between two elements is visually discom-
forting as well as distracting. To accommodate for this, we use a
misalignment energy term that heavily penalizes element pairs that
are slightly off from alignment.

Eamisaliдn =
1
3n2

∑
a

∑
i ∈(all)

∑
j ∈(all)

Iai jC(d
a
i j )

Here, dai j is a measure of the misalignment, i.e, minimum distance
to align the elements and C(·) is the cost function. We used C(d) =
5arctan

( d
0.015

)
heavily penalizing even minor misalignments.

A good layout finds a good mix of whitespace and limited
spread [31]. To account for these in our energy functions, we
encourage whitespace via a negative fraction of the total pixels that
are occupied, given by,

Ewhitespace = −S

(∑
p Ip

wh
;αwhitespace

)
where Ip is an indicator of whether a pixel p has any element or
not and (w,h) are the width and height of the image respectively.

While whitespaces are good, too much white space can be vi-
sually displeasing. We, therefore, penalize the spread via another
energy component given by,

Espread = S

(
1
n2

∑
i ∈(all)

min
j ∈(all)

Di j ;αspread

)
where Da

i j is the euclidean distance between elements i and j.
Our final energy component penalizes overlap between elements

and is given by the sum of overlapping pixel area across all combi-
nation of elements.

Eaover lap = S

(∑
p Ap

wh
;αover lap

)
whereAp is an indicator of any overlap at pixel p and (w,h) are the
width and height of the image respectively.

5.2 Layout Learning
The objective of defining the energy functions is to measure various
aspects of the layouts. While the proposed energy functions are
not exhaustive, it measures various visual aspects of the banner.
Due to the non-linearity of the energy function, the parameters
θ = [w,α] can neither be estimated easily nor can be set empiri-
cally. We, therefore, use a non-linear hyper-parameter optimization
framework based on randomized search [5] to learn the appropri-
ate θ from our training corpus of designs. These parameters are
updated iteratively based on a non-linear inverse optimization [18]
framework.

It is assumed thatXT is optimal for some unknown θ and in order
to estimate this parameter θ , we minimize the energy difference
between the example layouts XT and the optimal layout for an
unknown θ . This is given by the energy function,

G(θ ) = E(XT ;θ ) - min
X

E(X;θ )

Since the optimization is non-linear, we follow an alternating min-
imization approach where θ and XT are updated iteratively. At
each iteration, the previous θ is used to determine the optimized
layout (using the method described in the next subsection) followed
by determining the new θ that minimizes the G(θ ). The final θ is
obtained by repeating this over several iterations and is used for
energy computation in subsequent layout optimization.

5.3 Layout Optimization
Given a set of design elements X and the learned weights θ , the
task is to arrange these elements in a layout with the least total
energy. For this multi-variable problem involving highly coupled
constraints, we use a simulated annealing approach [1, 21] since
our search space is discrete. Though there are many optimization
algorithms, including hill climbing, gradient descent, etc., the ad-
vantage of simulated annealing is that it avoids getting stuck in
local minima/maxima even with complex optimization functions.

Zhang et al. [32] noted that initialization in such inverse opti-
mizations play a key role and bad initialization can seriously impact
the optimization. Therefore, the layout is first initialized based on
tree-of-parzen-estimator [6] based optimization and its energy is
computed. This gives a good initialization for faster convergence
and is better than a random initialization. The algorithm then pro-
ceeds to explore various proposals and a move is considered to be a
good one if the energy decreases from the current layout to the pro-
posed layout. All good transitions are accepted and bad transitions
are accepted with some probability. The process is repeated across
several iterations to reach the layout with optimal energy. In the
initial iterations, the probability of accepting higher energy layouts
is more, thus avoiding local minima. This threshold is annealed (or
decreased) as the optimization progresses so that only changes that
lower the energy are preferred.

The following proposals were executed to adjust the elements
and decrease various components of the energy function:

• Alignment: This proposal picks up two design elements ran-
domly and aligns them on one of the alignment axes.

• Overlapping Elements: It picks up two elements and checks
whether these elements have a common area and ensures
that they are separated.
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• Update Height/Width: This proposal alters the height/width
of a randomly chosen design element.

• Update Single Element Position: This proposal randomly
picks up any design element and shifts its position by a
certain distance in both x and y directions.

• Swap Elements: This proposal randomly swaps the location
of two elements.

5.4 Evaluating the layout optimization
Figures 6d, 6e and 6f show some sample banners from our algorithm.
It can be seen that the proposed algorithm produces reasonable
layouts. However, the text on top of images are not visually pleasing,
since we do not consider image saliency in our energy computation
- e.g. the font colour in Fig. 6d, the text overlap in Fig. 6f. While this
can be addressed via our framework, defining an appropriate energy
metric for saliency and corresponding proposals are a subject of
further research.

To formally evaluate the proposed framework, we create a large
number of machine-generated banners. We begin with identifying
banners with the same number of design elements in our dataset.
Retaining the content of the original banner, we optimize the other
banners to arrive at different layout combinations resulting in differ-
ent variants of the input banner. We deployed a human experiment
to compare the goodness of the optimized banners against human-
generated banners.

Every user is presented with a random banner image - either
machine-generated or designer-generated. The annotators are asked
to rate the alignment, overlap, spread and overall aesthetics of the
banners on a 5−point Likert scale with the items Very poor, Poor,
Neutral, Good and Very good. To maintain the quality of the annota-
tions, workers are restricted to those with 95% acceptance over a
minimum of 200 annotations. Every annotator rated a single image
and are asked to describe the banner in order to further filter out
arbitrary annotations. This crowd-sourced experiment is performed
on 30 machine-generated and 30 designer banners. Each banner
is evaluated by 5¢ different AMT workers and every successful
annotation is awarded 5. The ratings are summarized in Table 2.
Sample designer and machine-generated banners from our survey
are shown in Figure 6.

Aspect Alignment Overlap Spread Overall

Designer 3.705 4.093 3.899 4.046
Machine 3.854 3.806 3.806 3.733

Table 2: Average user ratings on a scale of 1-5

It is evident from Table 2 that banners generated from our algo-
rithm, which received a mean rating of 3.73, perform comparable to
designer banners with a mean rating of 4.05. There are considerable
variations in the assessment of specific visual qualities like align-
ment and overlap. The alignment score improved from designer
banners to our banners whereas overlap between elements was
found to be higher for machine-generated banners. The reason
for this is that alignment is primarily an objective metric which
depends only on the locations and sizes of the design elements, and
not the content. Overlap, on the other hand, is a more subjective

metric that is not independent of the content. For example, con-
sider the text boxes of figures 6a and 6f, both of which are placed
on top of images, thereby resulting in complete overlap. But the
overlap in 6a is not displeasing because it is situated over the image
background. In 6f however, the text interacts with the image fore-
ground and causes uneasiness. As mentioned before, our current
framework is content agnostic and taking the image saliency into
account requires defining an appropriate energy metric and propos-
als to optimize the metric and is a subject of further research. These
comparative annotations indicate that the proposed method can
help in providing compelling starting points for a novice designer.

6 CONCLUSION & FUTUREWORK
In this paper, we have studied the problem of transferring the user’s
content into a sample banner. Our algorithm uses a semantic seg-
mentation based framework to first extract the underlying template.
Once the user-content is entered into the layouts, we have energy-
based optimization to fine-tune the layouts with the user content.

While we have outlined our algorithm to take a single banner
into account, our algorithm can also be extended to optimize the
design elements from multiple banners. Fig 7. shows an example
where elements from 2 distinct banner images were combined and
optimized using our algorithm - however, we manually selected the
elements from individual banners. Automatically identifying the
right subset of elements from each of the banners to be combined
into an aesthetic banner is part of future research.
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