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ABSTRACT
A sizable proportion of deployed machine learning models make

their decisions in a black-box manner. Such decision-making pro-

cedures are susceptible to intrinsic biases, which has led to a call

for accountability in deployed decision systems. In this work, we

investigate mechanisms that help audit claimed mathematical guar-

antees of the fairness of such systems. We construct AVOIR, a

system that reduces the number of observations required for the

runtime monitoring of probabilistic assertions over fairness met-

rics specified on decision functions associated with black-box AI

models. AVOIR provides an adaptive process that automates the

inference of probabilistic guarantees associated with estimating

a wide range of fairness metrics. In addition, AVOIR enables the

exploration of fairness violations aligned with governance and regu-

latory requirements. We conduct case studies with fairness metrics

on three different datasets and demonstrate how AVOIR can help

detect and localize fairness violations and ameliorate the issues

with faulty fairness metric design.

CCS CONCEPTS
• Mathematics of computing → Probability and statistics; • Soft-
ware and its engineering→ Domain specific languages.
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1 INTRODUCTION
Advanced analytics and artificial intelligence (AI), along with its

many benefits, pose significant threats to individuals and the broader

society. [24] identify invasion of privacy; manipulation of vulnera-

bilities; bias against protected classes; increased power imbalances;

error; opacity and procedural unfairness; displacement of labor;

pressure to conform, and intentional and harmful use as some of

the key areas of concern. A core part of the solution to mitigate
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such risks is the need to make organizations accountable and en-

sure that the data they leverage and the models they build and

use are both inclusive of marginalized groups and resilient against

societal bias. Deployed AI and analytic systems are complex multi-

step processes that can incorporate several sources of risk at each

step. At each of these stages, determining accountability in the

decision-making of AI processes requires a determination of who

is accountable, for what, to whom, and under what circumstances

[10, 34]. A more comprehensive overview of the mechanisms that

can support accountability for the different stages of machine learn-

ing system design can be found in the work of Cooper et al. [10].

Our analysis centers on auditing fairness claims of mathematical

guarantees associated with automated, black-box decision-making

processes. Governments worldwide are wrestling with different

implementations of auditing regulations and practices to increase

the accountability of decision processes. Recent examples include

the New York City auditing requirements for AI hiring tools [40],

European data regulation (GDPR [36]), accountability bills [9, 35]

and judicial reports [27]. These societal forces have led to the emer-

gence of checklists [32, 37], metrics of fairness [41], and recently,

algorithms and systems that observe and audit the behavior of AI al-

gorithms. Such ideas date back to the 1950s [33]. However, research

has been sporadic until very recently, with the widespread use of

AI-based decision-making giving rise to the vision of algorithmic

auditing [17]. In this work, we present a framework called AVOIR
1
,

for auditing and verifying fairness online. AVOIR builds upon the

ideas on distributional probabilistic fairness guarantees [2, 4], gen-

eralizing them to real-world data.

2 BACKGROUND AND KEY CONTRIBUTIONS
Fairness criteria quantify the relationship between the outcome

metric across multiple subgroups or similar individuals in the popu-

lation. Formal definitions of fairness focus on observational criteria,

i.e., those that can be written down as a probability statement in-

volving the joint distribution of the features, sensitive attributes,

decision-making function, and actual outcome. Consider a decision-

making function that claims to satisfy certain fairness guarantees.

In our setup, auditing a claim about a fairness guarantee would

involve quantifying the probability of claim violations. Given a par-

ticular failure probability Δ and a stream of data . . . , (𝑋𝑡 , 𝑌𝑡 ), . . .
over time steps 𝑡 at run time, a fairness claim 𝜓 would be con-

sidered valid if Pr[∀𝑡 ≥ 1,𝜓 ] ≥ 1 − Δ. Assuming that the data

is sampled from a fixed, possibly unknown distribution 𝑝
data

, a

common strategy to test the validity of a claim is to use hypoth-

esis testing with a predetermined sample size 𝑚. However, it is

impossible to know a priori whether 𝑚 will be large enough to

1
AVOIR in French means “to have”, and this acronym reflects both our aspirational

goal to achieve fairness in advanced analytics and AI but also reflects what is currently

verifiable given a dataset, a model, and a fairness specification.
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verify this hypothesis [44], and peeking at the data to determine

the sample size would be considered ‘p-hacking.’ Collecting labeled

data for fairness-related applications is expensive [26]; therefore, it

is essential to ensure that a monitoring system used for auditing

the fairness claim can adaptively and continuously update its esti-
mates of the probability of validity. We consider a claim as invalid

if Pr[∀𝑡 ≥ 1,¬𝜓 ] ≥ 1 − Δ, where ¬ denotes negation. Another

desirable feature in the auditing system would be a finite-horizon
stopping rule that should be able to decide the validity/invalidity of

a claim, given sufficient data.

We show that the framework of confidence sequences/sets [25]

provides a mechanism for building confidence intervals for infer-

ence in sequential experiments with nonasymptotic (i.e., always

valid for 𝑡 ≥ 1) intervals that approach zero width, ensuring that a

stopping rule would have a finite termination. We would also like

to be able to localize and diagnose terms within a fairness metric

that leads to the inference of a negated claim. For example, suppose

𝑟 ∈ {0, 1} denotes the return value of a binary decision function (say,
job candidate selection), and 𝑠 is an indicator denoting whether

a candidate belongs to a minority population. The 80%-rule for

disparate impact [14, 15] is a fairness criterion which states that

Pr[𝑟 = 1|𝑠]
Pr[𝑟 = 1|¬𝑠] ≥ 0.8

Assuming that a confidence sequence approach leads to the infer-

ence of a negated claim (invalid) for disparate impact, a diagnosis

would determine whether the numerator or denominator in the

criterion lead to the invalidity. AVOIR uses an inference framework

that builds upon distributional guarantees for each term within the

criterion, which can help with such a diagnosis. Further, overall

uncertainty can be guaranteed across multiple groups by balancing

it across subexpressions with differences in the number of observed

samples. For example, consider Bernoulli r.vs
2 𝑋1,2 for which we

derive concentration guarantees Pr[|E[𝑋𝑖 ] − E[𝑋𝑖 ] | ≥ 𝜀𝑖 ] ≤ 𝛿𝑖
after 𝑡𝑖 observations. Here, E[𝑋 ] refers to the population mean,

E[𝑋 ] refers to an empirical mean based on observations of 𝑋 , and

𝜀, 𝛿 > 0 are the concentration level and failure probability, respec-

tively. From the Hoeffding inequality, 𝛿 = 2𝑒−2𝑡𝜀
2

. We can claim

tighter bounds for𝑋2 if 𝑡2 > 𝑡1 as the failure probability 𝛿 is lower at

the same concentration 𝜀. That is, 𝜀1 = 𝜀2, 𝑡2 > 𝑡1 ⇒ 𝛿1 > 𝛿2. Vary-

ing 𝜀 across subexpressions to minimize the overall (union bounded)

𝛿 = 𝛿1 + 𝛿2 allows an earlier stopping time for a valid/invalid claim,

i.e., fewer iterations and fewer data samples. Adaptive versions of
these inequalities also have similar patterns (see Figure 1).

Consider 𝑅, a Bernoulli r.v corresponding to the output of a

binary decision function, with 𝑠 being an indicator of class member-

ship. Let𝑋 = 𝑟∨𝑠 and𝑌 = 𝑟∨¬𝑠 be r.vs corresponding to a favorable
decision for themajority andminority classes, respectively. Suppose

we aim to estimate a criterion𝜓 :=𝐸 [𝑋 ] −𝐸 [𝑌 ] < 𝜀𝑇 Previous work

on inference from distributional guarantees [2, 4] assumes equal fail-

ure probability across all groups, i.e., the assumption 𝐴𝛿 :=𝛿1 = 𝛿2.

Suppose we want the upper bound of the failure probability Δ = 0.1

for the specified criterion. Consider a 𝑛𝑋 , 𝑛𝑌 observations for 𝑋,𝑌

such that E[𝑋 ] = 0.8, 𝑛𝑋 = 1550 and E[𝑌 ] = 0.5, 𝑛𝑌 = 310. Figure 2

shows that no solution is feasible for the optimization problem with

2
random variables
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Figure 1: Failure probability 𝛿 of a Bernoulli r.v. vs concen-
trated around mean 𝜀 for different 𝑛. At the same concentra-
tion, lower failure probability for the majority class (greater
n). H = (online) Hoeffding, AH = Adaptive Hoeffding.
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Figure 2: AVOIR finds a solution for a theoretical scenario
with 𝛿1+𝛿2 ≤ Δ under constraint 𝜀1+𝜀2 ≤ 𝜀𝑇 . No solution exists
with additional constraint 𝐴𝛿 : 𝛿𝑋 = 𝛿𝑌 = Δ/2 - common
assumption in prior work.

𝐴𝛿 . However, AVOIR can find a solution. For the optimal solution,

𝛿2 ≈ 2.35𝛿1, which aligns with our intuition about allocating higher

failure probability to terms with the majority of observations. The

optimization problem inferred by AVOIR:

min

𝛿𝑋 ,𝛿𝑌
𝛿𝑋 + 𝛿𝑌

s.t. 𝜀𝑋 + 𝜀𝑌 ≤ E[𝑋 ] − E[𝑌 ] − 𝜀𝑇
Key Contributions:We now summarize our contributions vis-à-

vis FP [2] and VF [4], the most closely related prior work.

(1) We build AVOIR in the framework of confidence sets [25]
which enables adaptive optimization of 𝛿 across subexpres-

sions of a specification. Note that FP only provides examples

with equal splits while VF splits uncertainty equally across

all elementary subexpressions.

(2) The confidence sets framework allows us to avoid assuming

a known data distribution or fitting a density estimator over
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Symbol Description

Δ Overall failure probability for a specificaiton

𝑋𝑖 Bernoulli random variable for 𝑖𝑡𝑔 tern

E[𝑋 ] Empirical estimate of expectation E[𝑋 ]
𝑡 No. of observed samples

E[𝑋𝑖 ]𝑡 Empirical estimate after 𝑡 steos

𝛿𝑖 Failure probability 0 ≤ 𝛿𝑖 ≤ 1 corresponding to 𝑋𝑖

𝜀𝑖 Concetration bound for |𝐸 [𝑋𝑖 ] − E[𝑋𝑖 ] | ≤ 𝜀𝑖

𝜙𝑋 Concentration bound for empirical estimate of 𝐸 [𝑋 ]
𝜓 Fairness specification

𝑟, 𝑅 Return value of the function being monitored

𝑦,𝑌 True label

𝑠, 𝑆 Indicator for group membership

𝑐 Constant ∈ R
𝐶 A set of constraints

Table 1: The AVOIR symbol descriptions table.

the population prior to fairness testing, which is required in

VF.

(3) We augment the bound propagation rules to facilitate

the online optimization process and allow propagation of

constraints along with assertions at each iteration.

(4) We build an inference engine that supports the automated

inference of propagation rules for a wide range of metrics,

with a finite stopping rule under mild conditions. In Sec-

tion 4, we provide examples of inference over specifications

involving multiple subexpressions, which are only possi-

ble by extending the implementations provided by previous

work. We also implement bound inference rules from VF

(denoted AVOIR-VF) as a baseline.

(5) We support diagnosis of fairness violations using bounds
inferred for subexpressions. We demonstrate the use of these

cues to help drive the design of specifications in Section 4.2,

which shows how a user may audit a fairness claim.

3 AVOIR FRAMEWORK
3.1 Definitions
AVOIR supports implementing an extensive range of group fairness

criteria, including demographic parity [6], equal opportunity [22],

disparate mistreatment [46], and combinations of these criteria.

For instance the above 80%-rule is E[r | S==s]/E[r | S!=s] > 0.8 in

AVOIR’s DSL
3
. Here, the term E[r | S==s]/E[r | S!=s] is a subexpres-

sion of the specification. The smallest units involving an expectation

(e.g., E[r | S!=s]) are denoted as elementary subexpressions. We fo-

cus on fairness criteria that can be expressed using Bernoulli r.v.

as it allows the simplification of probabilities into expectation, as

Pr[𝑟 = 1] = E[𝑟 ] (hereafter, used interchangably). Our algorithm

uses adaptive concentration sets [25, 48] to build estimates for

elementary subexpressions and then derive the estimates for expres-

sions that combine them. A combination of multiple such elemen-

tary expressions is denoted as a compound expression. We aim to de-

rive statistical guarantees about fairness criteria based on estimates

from observed inputs and outputs. For example, let𝑋 be an observed

3
Domain Specific Language

⟨spec⟩ ::= ⟨ETerm⟩ ⟨comp-op⟩ c
| ⟨spec⟩ ∧ ⟨spec⟩
| ⟨spec⟩ ∨ ⟨spec⟩

⟨ETerm⟩ ::= E[⟨E⟩]
| E[⟨E⟩, given=⟨E⟩]
| c ∈ R
| ⟨ETerm⟩ {+,−,×,÷} ⟨ETerm⟩

Figure 3: Grammar for specification. ⟨𝐸⟩ refers to expressions
of r.vs and ⟨𝑐𝑜𝑚𝑝 − 𝑜𝑝⟩ = comparison operator ∈ {>, <,=,≠}.

Bernoulli r.v, then an assertion 𝜙𝑋 = (E[𝑋 ], 𝜀, 𝛿) over 𝑋 , corre-
sponds to an estimate satisfying 𝜙𝑋 := Pr[|E[𝑋 ] − E[𝑋 ] | ≥ 𝜀] ≤ 𝛿
where E[𝑋 ] denotes an empirical estimate of 𝐸 [𝑋 ]. We then use

assertions 𝜙𝑋 , 𝜙𝑌 to assert claims for expressions involving 𝑋,𝑌 .

For example, for the 80%-rule, assertions over E[𝑋 ]/E[𝑌 ]. A speci-
fication involves either a comparison of expressions with constants

(e.g., E[𝑋 ]/E[𝑌 ] > 0.8) or combinations of multiple such compar-

isons. Such a specification may be True (𝑇 ) or False (𝐹 ) with some

probability. For a given specification 𝜓 , we denote the claim that

𝑃 [𝜓 = 𝐹 ] ≥ 1 − Δ as𝜓 : (𝐹,Δ), where Δ denotes the failure proba-

bility of a guarantee. Given a stream of observations and outcomes

from the decision functions, and a specified threshold probability Δ,
we will continue to refine the estimate for a given specification until

we reach the threshold. Specifications involving variables that take

more than two values can be implemented using transformations

and boolean operators (examples in Appendix D).

3.2 Language Specification
We describe AVOIR’s DSL used for specifying fairness metrics (Fig-

ure 3). We focus on binary decision-making functions; Bernoulli

r.v.s can characterize their outputs. Consider a decision function

𝑓 : 𝑋 → {0, 1}, where 𝑋 = (𝑋1, . . . , 𝑋𝑘 ) denotes a real-valued

input vector. We use 𝑅 = 𝑓 (𝑋 ) to simplify the remainder of the

definitions. The grammar can be used to construct Bernoulli r.vs

to support expressions beyond those that produce binary outputs.

For example, a 𝜈-threshold based real-valued output, 𝑅′ = (𝑅 > 𝜈)
and a multi-class output, for class 𝑗 , 𝑅′ = (𝑅 == 𝑗) correspond to

Bernoulli r.vs. Expressions involving 𝑅 and 𝑋𝑖 act as the arguments

<E> to construct an <ETerm>. For example, E[𝑅 > 0|𝑋1 + 𝑋2 > 𝑎].
𝑐 terms represent constant real values used as bounds for speci-

fications. We modified the grammar from prior work to include

two additional operations. First, we added a given argument to E,
which allows a user to specify conditional probabilities directly, in

contrast to specifying it as a ratio of joint/marginal probabilities.

E(𝐴 ∨ (𝐵 = 𝑏))
E(𝐵 = 𝑏) → E(𝐴, given = (𝐵 = 𝑏))

which is used to represent E[𝐴|𝐵 = 𝑏], simplifying expressions for

group fairness specification. Additionally, we add comparison oper-

ators, which further simplify the process of writing specifications.

3.3 Propagating Bounds
Generating the bounds for a specification requires propagating

them from elementary subexpressions. Assuming that observed
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values for each <E> correspond to an underlying random variable

𝑋 , a probabilistic guarantee 𝜙𝑋 for an elementary subexpression

consists of an empirical estimate E[𝑋 ], a concentration bound

𝜀𝑋 , and a failure probability 𝛿𝑋 , such that Pr[|E[𝑋 ] − E[𝑋 ] | ≥
𝜀𝑋 ] ≤ 𝛿𝑋 . For compound expressions, we must infer the implied

guarantees that can be inferred with corresponding constraints.

Each inference rule corresponds to a derivation in the DSL grammar.

Inference rules have preconditions and postconditions that are in

the form: ⋃ {𝑟 |𝑟 ∈ {𝜙,𝜓,𝐶}}⋃ {𝑠 |𝑠 ∈ {𝜙,𝜓,𝐶}}
where 𝜙 denotes a claim for a subexpression, 𝜓 for a <spec>.For
example, consider the sum/difference rule. Starting with the as-

sumptions 𝜙𝑋 :=(E[𝑋 ], 𝜀𝑋 , 𝛿𝑋 ), 𝜙𝑌 :=(E[𝑌 ], 𝜀𝑌 , 𝛿𝑌 ). Then we have

|E[𝑋 ] ± E[𝑌 ] − (E[𝑋 ] ± E[𝑌 ]) |

≤ |E[𝑋 ] − E[𝑋 ] | + |E[𝑌 ] − E[𝑌 ] |
≤ 𝜀𝑋 + 𝜀𝑌

i.e., 𝜙𝑋 , 𝜙𝑌 ⇒ 𝑋 ± 𝑌 :

(
E[𝑋 ] ± E[𝑌 ], 𝜀𝑋 + 𝜀𝑌 , 𝛿𝑋 + 𝛿𝑌

)
. Inference

rules may require constraints, for e.g., assume 𝜙𝑋 :=(E[𝑋 ], 𝜀𝑋 , 𝛿𝑋 ),
E[𝑋 ] > 𝑐 . Then we have Pr[E[𝑋 ] < E[𝑋 ] − 𝜀𝑋 ] > 1 − 𝛿 If we add

the constraint that E[𝑋 ] − 𝜀𝑋 ≥ 𝑐 , we have Pr[𝑋 < 𝑐] > 1−𝛿 , thus,
𝜙𝑋 ⇒ 𝜓 :=𝑋 > 𝑐 : (𝑇, 𝛿𝑋 )

under the constraint {E[𝑋 ] − 𝜀𝑋 ≥ 𝑐}
The complete set of inference rules required for the DSL is provided

in the appendix (Figure 7). The implementation in AVOIR follows

these rules but could be extended to other rule inference templates

that support the DSL. Note that these rules extend the ones imple-

mented by VF [4] with constraints that enable the optimizations

required in AVOIR.

3.4 Optimizing Bounds
3.4.1 AVOIR Algorithm. The pseudocode for the optimization pro-

cedure in AVOIR is described in Algorithm 1. The input to the algo-

rithm is the reporting threshold probability Δ and a specification𝜓 .

We then infer a symbolic optimization problem corresponding to

the bounds and failure probabilities of the elementary subexpres-

sions. At each step, the OBSERVE(X) function is called with the new

observation of every elementary subexpression and output. The

empirical running means and counts of observations are updated.

The final optimization problem OPT corresponding to each specifica-
tion is a nonlinear constrained optimization problem. If a solution

is successfully found for OPT, the algorithm terminates, and the

estimate for the specification has reached the required threshold. If

no solution is found, the estimates will be updated with 𝛿𝑖 = Δ for

each elementary subexpression. The intuition behind the algorithm

is to use a confidence sequence corresponding to the estimates of

elementary subexpressions at each time step. The inferred OPT has

the form

min

0≤𝛿𝑖≤1

𝑛∑︁
𝑖=1

𝛿𝑖

s.t. 𝑔𝑘 (𝛿1,...,𝑛,E[𝑋1], . . . ,E[𝑋𝑛]) ≤ 𝜀𝑘

(1)

Algorithm 1 AVOIR Algorithm

Input: Δ,𝜓 ⊲ Δ, Specification
Output: 𝑇𝑠 time step when the value of𝜓 can be guaranteed with proba-

bility ≥ 1 − Δ
1: for 𝑋𝑖 ∈ 𝜓 do
2: 𝛿𝑋𝑖 = Δ ⊲ Set initial value ∀𝑖
3: 𝑆𝑋𝑖 = 0 ⊲ Sum of observations

4: 𝑛𝑋𝑖 = 0 ⊲ Number of observations

5: end for
6: 𝑇 = 0 ⊲ Time step

7: Initialize𝑂𝑃𝑇𝜓 ⊲ Initialize Optimization Problem (Fig. 7)

8: procedure Observe(𝑋 )

9: for 𝑋𝑖 ∈ 𝑋 do
10: 𝑆𝑋𝑖 = 𝑆𝑋𝑖 +𝑋𝑖

11: 𝑛𝑋𝑖 = 𝑛𝑋𝑖 + 1

12: E[𝑋𝑖 ] = 𝑆𝑋𝑖 /𝑛𝑋𝑖
13: Initialize 𝛿𝑋𝑖 as a symbolic variable

14: Assign 𝜀 (𝛿𝑋𝑖 , 𝑛𝑋𝑖 ) symbolic variable

15: end for
16: Propagate 𝛿𝑋𝑖 using the inference rules

17: Initialize constraints 𝑔𝐾 in𝑂𝑃𝑇𝜓 using the computed values

18: 𝛿∗
𝑇
= Solve(𝑂𝑃𝑇𝜓 )

19: if 𝛿∗
𝑇

≤ Δ then
20: 𝛿𝑋𝑖 = 𝛿∗

𝑇
[𝑋𝑖 ]

21: return𝑇𝑠 = 𝑇

22: end if
23: 𝑇 = 𝑇 + 1

24: end procedure

where 𝑔𝑘 , 𝜀𝑘 are the functions/bounds derived using the transfor-

mations carried out through the inference rules (Appendix A.2).

Definition 1. For 𝛿 ∈ [0, 1], a 1 − 𝛿 confidence sequence is a se-
quence of confidence sets, usually intervals (CIt)∞

t=1
,, CIt :=(Lt, Rt) ⊆

R satisfying a uniform convergence guarantee. After observing the
𝑡 th unit, we calculate an updated confidence set CIt for an unknown
quantity 𝜃𝑡 with the coverage property Pr(∀𝑡 ≥ 1, 𝜃𝑡 : 𝜃𝑡 ∈ CIt) ≥
1 − 𝛿 [25].

In this paper, we focus on the mean of r.v.s E[𝑋 ] that constitute
estimates for elementary subexpressions as the quantities of inter-

est. We use adaptive concentration inequalities to construct these

confidence sequences. Any adaptive concentration inequality that

can be applied to an r.v. 𝑋 ∈ {0, 1} such that

Pr[|E𝑡 [𝑋 ] − E[𝑋 ] | ≥ 𝜀 (𝑡, 𝛿)] ≤ 𝛿 (2)

can be used in AVOIR. Here, E𝑡 [𝑋 ] is the empirical estimate of

E[𝑋 ] after the 𝑡 th observation. For comparison with previous work

(e.g., VF), we use the Adaptive Hoeffding Inequality AINH [48].

Theorem 1 (AIN𝐻 ). Given a Bernoulli random variable X with
distribution 𝑃𝑋 . Let {𝑋𝑖 ∼ 𝑃𝑋 }, 𝑖 ∈ N be i.i.d samples of 𝑋 . Let

E𝑡 [𝑋 ] =
1

𝑡

𝑡∑︁
𝑖=1

𝑋𝑖 .

Let T be a r.v on N ∪ {∞} such that Pr[T < ∞] = 1, and let

𝜀 (𝛿, 𝑡) =

√︄ (
3

5

log (log
1.1 𝑡 + 1) + 5

9

log (24/𝛿)
)/

𝑡
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Then, for any 𝛿 ∈ R+, we have
Pr[|ET [𝑋 ] − E[𝑋 ] | ≤ 𝜀 (𝛿,T)|] ≥ 1 − 𝛿.

We will generate estimates using AINH and Corollary 4.1 for

elementary subexpressions that are valid nonasymptotically (i.e.,

∀𝑡 > 1) and then expand this to compound subexpressions.

Theorem 2. The sequences of estimates generated by AVOIR form
a confidence set.

The intuition for the proof is as follows: first, for elementary

subexpression 𝑋 , let the failure probability at the stopping time

be 𝛿∗
𝑋
. From eq. (1), we can show that Δ ≥ 𝛿∗

𝑋
. Further, 𝜀 (𝛿, 𝑡)

is monotonically decreasing in 𝛿 . Thus, setting 𝛿𝑋 (𝑡) = Δ as per

Algorithm 1 before stopping time will ensure that the estimated

confidence intervals before the stopping time corresponding to

each time step for 𝑋 would be a subset of the optimized values,(
E[𝑋 ]𝑡 ± 𝜀 (𝛿∗𝑋 , 𝑡)

)
⊆

(
E[𝑋 ]𝑡 ± 𝜀 (Δ, 𝑡)

)
where (𝜇 ± 𝜎) = (𝜇 − 𝜎, 𝜇 + 𝜎). Next, for compound subexpressions

and specifications, the correctness of the inference rules used for

propagating bounds (Figure 7) can be used to prove that the confi-

dence sequence is valid nonasymptotically. We now proceed with

the detailed proof. First, we assume the existence of a confidence se-

quence for the mean of each elementary subexpression (e.g., using

Theorem 1). That is, we need an AIN for 𝜀 (𝑡, 𝛿) such that

Pr[∀𝑡 ≥ 1, |E𝑡 [𝑋 ] − E[𝑋 ] | ≤ 𝜀 (𝑡, 𝛿𝑋 )] ≥ 1 − 𝛿𝑋 . (3)

We assume 𝜀 (𝑡, 𝛿) to be monotonically non-increasing in 𝛿 and

𝑛. We expect this to be the case for most AIN, since increasing

the number of observations of increasing the failure threshold

should allow for additional concentration around the mean (e.g.,

this holds for AINH) Second, we assume that except in degenerate

cases, AVOIR terminates at finite stopping time T (termination

criteria in Corollary 3.2, Appendix).

Proof. Elementary subexpressions: Consider a specification 𝜓

consisting of elementary subexpressions 𝑋1, . . . , 𝑋𝑛 . At stopping

time, let 𝜙T
𝑋𝑖

:=(ET [𝑋𝑖 ], 𝜀 (T , 𝛿𝑋𝑖 ), 𝛿𝑋𝑖 ) be the stopping time es-

timates. Then, from the termination criterion, a solution to the

optimization problem OPT exists, i.e,

Δ ≥
∑︁
𝑖

𝛿𝑋𝑖 (4)

The sequence of bounds claimed by AVOIR are

𝜀𝑋𝑖 (𝑡) =
{
𝜀 (Δ, 𝑡), 𝑡 < T ,
𝜀 (𝛿𝑋𝑖 , 𝑡), 𝑡 ≥ T

(5)

From equation 4 and since 𝛿𝑖 ∈ [0, 1] we have Δ ≥ 𝛿𝑋𝑖 . From

the non-decreasing behavior of AIN

𝜀 (Δ, 𝑡) ≤ 𝜀 (𝛿𝑖 , 𝑡) (6)

Now

Pr[∀𝑡 ≥ 1, |E𝑡 [𝑋𝑖 ] − E[𝑋𝑖 ] | ≤ 𝜀𝑋𝑖 (𝑡)]

= 1 − Pr[∃𝑡 ≥ 1, |E𝑡 [𝑋𝑖 ] − E[𝑋𝑖 ] | > 𝜀𝑋𝑖 (𝑡)]

= 1 − Pr

[⋃
𝑡≥1

{
|E𝑡 [𝑋𝑖 ] − E[𝑋𝑖 ] | > 𝜀𝑋𝑖 (𝑡)

}]

= 1 − Pr

[T−1⋃
𝑡=1

{
|E𝑡 [𝑋𝑖 ] − E[𝑋𝑖 ] | > 𝜀𝑋𝑖 (𝑡)

}
∪

⋃
𝑡≥T

{
|E𝑡 [𝑋𝑖 ] − E[𝑋𝑖 ] | > 𝜀𝑋𝑖 (𝑡)

}]
(∪ associativity)

= 1 − Pr

[T−1⋃
𝑡=1

{
|E𝑡 [𝑋𝑖 ] − E[𝑋𝑖 ] | > 𝜀 (𝛿𝑋𝑖 , 𝑡)

∪ |E𝑡 [𝑋𝑖 ] − E[𝑋𝑖 ] | ∈ (𝜀 (Δ, 𝑡), 𝜀 (𝛿𝑋𝑖 , 𝑡)]
}
∪⋃

𝑡≥T

{
|E𝑡 [𝑋𝑖 ] − E[𝑋𝑖 ] | > 𝜀 (𝛿𝑋𝑖 , 𝑡)

}]
(Using 5, 6)

= 1 − Pr

[T−1⋃
𝑡=1

{
|E𝑡 [𝑋𝑖 ] − E[𝑋𝑖 ] | ∈

(𝜀 (Δ, 𝑡), 𝜀 (𝛿𝑋𝑖 , 𝑡)]
}
∪⋃

𝑡≥1

{
|E𝑡 [𝑋𝑖 ] − E[𝑋𝑖 ] | > 𝜀 (𝛿𝑋𝑖 , 𝑡)

}]
(Rearranging)

≥ 1 − Pr

[⋃
𝑡≥1

{
|E𝑡 [𝑋𝑖 ] − E[𝑋𝑖 ] | > 𝜀 (𝛿𝑋𝑖 , 𝑡)

}]
= 1 − Pr

[
∃𝑡 ≥ 1, |E𝑡 [𝑋𝑖 ] − E[𝑋𝑖 ] | > 𝜀 (𝛿𝑋𝑖 , 𝑡)

]
≥ 1 − 𝛿𝑋𝑖
where the last step follows from the definition of the AIN used.

Thus, 𝜀𝑋𝑖 (𝑡) defines a 1 − 𝛿𝑋𝑖 confidence sequence for E[𝑋𝑖 ].
Compound subexpressions: Consider a non-specification compound

(<ETerm>) 𝐶 𝑗 consisting of elementary subexpressions with indices

C𝑗 = {{ 𝑗1, 𝑗2, . . . , 𝑗𝑀 }} as the decision r.v.s, i.e, 𝑋 𝑗1 . . . , 𝑋 𝑗𝑀 . Note

that C𝑗 is a multiset as the same expression could occur multiple

times within 𝐶 𝑗 . At stopping time T ,

𝜙T
𝐶 𝑗

: (ET [𝐶 𝑗 ], 𝛿𝐶 𝑗 , 𝜀𝐶 𝑗 ) (7)

where ET [𝐶 𝑗 ], 𝛿𝐶 𝑗 , 𝜀𝐶 𝑗 are the corresponding values computed

through the inference rules. In general, we denote by

E𝑡 [𝐶 𝑗 ], 𝛿𝐶 𝑗 (𝑡), 𝜀𝐶 𝑗 (𝑡) = INFER(𝜙 t
Xj

1

, . . . , 𝜙 t
Xj

M

) (8)

the values inferred at 𝑡 , using the inference rules INFER. Now,

Pr[∃𝑡 ≥ 1, |E[𝐶 𝑗 ] − E[𝐶 𝑗 ] | > 𝜀𝐶 𝑗 (𝑡)]

≤ Pr

[
𝑀⋃
𝑖=1

∃𝑡 ≥ 1,¬𝜙𝑡𝑋 𝑗𝑖

]
(eq. (8))

≤
∑︁
𝑖∈C𝑗

Pr

[
∃𝑡 ≥ 1,¬𝜙𝑡𝑋 𝑗𝑖

]
(union bound)

=
∑︁
𝑖∈C𝑗

Pr

[
∃𝑡 ≥ 1, |E𝑡 [𝑋 𝑗𝑖 ] − E𝑡 [𝑋 𝑗𝑖 | > 𝜀𝑋 𝑗𝑖 (𝑡)

]
(definition of 𝜙𝑡𝑋 𝑗𝑖

)

≤
∑︁
𝑖∈C𝑗

𝛿𝑋 𝑗𝑖
(elementary subexpressions)

≤ 𝛿𝐶 𝑗 (eq. (8) at 𝑡 = T )
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Therefore 𝜀𝐶 𝑗 (𝑡) defines a 1−𝛿𝐶 𝑗 confidence sequence for E[𝐶 𝑗 ] A
similar proof can be constructed for any <spec> (appendix B.1). □

Corollary 2.1. The estimates for the overall specification𝜓 form
a confidence sequence which staisfies𝜓 : (𝑏,Δ), 𝑏 ∈ {𝑇, 𝐹 } at T .

Proof. We initialize the main specification with the required

failure probability Δ. At termination,

∑
𝛿𝑖 ≤ Δ. From Theorem 2,

we can infer that the confidence sequence corresponding to the

termination achieves the threshold Δ, as required. □

3.4.2 Improvements over Baseline. In all prior work [1, 2, 4], 𝛿𝑖
for each elementary subexpressions is set to Δ/𝑛, where 𝑛 is the

number of elementary subexpressions in the specification. This

simplification uses the assumption𝐴𝛿 :=𝛿𝑖 = 𝛿 𝑗 ∀𝑖, 𝑗 for elementary
subexpressions. As we do not make this assumption, we can prove

the following critical theorem (note, Corollary 3.2 describes the

conditions required for finite stopping).

Definition 2. We define the specification stopping time T for a
confidence sequence as the smallest 𝑡 such that given a threshold Δ
and a specification𝜓 , an inference algorithm terminates with Pr[∀𝑡 ≥
1,𝜓𝑡 = 𝜓T ] ≥ 1 − Δ, where𝜓T is the estimate of𝜓 at T .

Theorem 3. Given a threshold probability Δ for a specification𝜓 ,
let the stopping time for AVOIR be T and the stopping time with the
𝐴𝛿 assumption be T +. Then T ≤ T +

Proof. Under 𝐴𝛿 , at the stopping time T +
, 𝛿+

𝑖
= Δ/𝑛, with

𝑛∑
𝑖=1

𝛿+
𝑖
= Δ. As 𝛿+

𝑖
are propagated using INFER (without constraint

rules), we know that they must satisfy the constraints of the opti-

mization problem in eq. (1). At time T +
AVOIR would find solution

𝛿∗
𝑖
such that minimizes

𝑛∑
𝑖=1

𝛿𝑖 .

𝑛∑︁
𝑖=1

𝛿∗𝑖 ≤
𝑛∑︁
𝑖=1

𝛿+𝑖 = Δ

Thus, AVOIR would have terminated by step T +
, but may find a

feasible solution at an earlier step, i.e., T ≤ T +
. □

3.5 Implementation Details
We built a Python library to create specifications as a decorator over

decision functions. New input/output observations are monitored

to update all the terms in a specification. Inference for evaluating

the value and bounds is carried out via operator overloading.In line

with previous work [1, 2, 4] on distributional verification, we use

rejection sampling for conditional probability estimation. We use

the COIN-OR implementation of IPOPT [42], accessed through the

Pyomo [23] interface for optimization. Code for reproducing this

work is available at https://github.com/pranavmaneriker/AVOIR.

4 EVALUATION
In this section, we evaluate AVOIR.variants through three real-

world case studies. Direct comparisons with existing work are

impossible since no other work (to our knowledge) facilitates a

general-purpose inference engine for online fairness auditing using

arbitrary measures. We can, however, implement VF’s [4] inference

rules within AVOIR (denoted as AVOIR-VF). Note that AVOIR-VF

Figure 4: Bounds for first half of a gender-fairness specifica-
tion generated by AVOIR-OB and AVOIR-VF for RateMyProfs,
a real-world dataset. Vertical lines show the step at which
the methods can provide a guarantee of failure for the upper
bounds with Δ <= 0.05. Blue horizontal line represents the
constant term in the inequality.

sidesteps the assumptions of having a known data-generating dis-

tribution (made possible by AVOIR’s reliance on confidence sets),

making this variation a more practical and efficient algorithm. We

denote AVOIR-OB as the implementation that utilizes the above-

mentioned optimizations. Across the studies, the role of chosen

threshold probabilities is similar to that of p-values in statistics.

Typical p-values tend to be 0.05 and 0.1, which we demonstrate in

the RateMyProfs and COMPAS risk assessment study. In our case

study of prior work [3], we stick to the available definitions and

thresholds used in the original analysis. We expect that regulators

will set the threshold probabilities on a case-by-case basis, e.g„ 0.15

for illustration purposes in the adult income study.

4.1 Rate My Profs
This section provides a detailed black-box machine learning model-

based case study on a real-world dataset. This case study uses the

Rate My Professors (RMP) dataset [28]. This dataset includes profes-

sor names and reviews for them written by students in their classes,

ratings, and certain self-reported attributes of the reviewer. Ratings

are provided on a five-point scale (1-5 stars). We use the preprocess-

ing described in [28] to infer the gender attribute for the professors.

This dataset is divided into an 80-20 split (train-test). We then train

a BERT-based transformer model [11] on the training split. We use

the implementation from the simpletransformers
4
package. The

loss function chosen is the mean-squared error from the true rat-

ings. On the test set, we track a gender-fairness specification in the

model outputs:

(E[r > 3 | gender = F] / E[r > 3 | gender = M < 1.2) &

(E[r > 3 | gender = M)] / E[r > 3 | gender = F] > 0.8)

4
https://simpletransformers.ai/

https://github.com/pranavmaneriker/AVOIR


Online Fairness Auditing through Iterative Refinement KDD ’23, August 6–10, 2023, Long Beach, CA, USA

We set the failure probability Δ = 0.05. OPT is run after each batch

(5 items/batch). Figure 4 shows that AVOIR-OB
5
can provide a guar-

antee in 2.5% fewer iterations than AVOIR-VF. Note also that the

OB guarantee provided tries to optimize for the failure probability

while staying under the required threshold, remaining closer to the

required threshold in subsequent steps.

4.2 Adult Income
In this case study, we analyze the Adult income dataset [30]. The

historical dataset labels individuals from the 1994 census as having

a high-income (> 50k a year) or not (≤ 50k a year). We consider

this column of data as a black-box measurement. US Federal laws

mandate against race and sex-based discrimination. Thus, the spec-

ification we start our analysis with is a group fairness property for

federal employees that monitors the difference of the proportions

of individuals with sex marked male vs. female with a high income

should be less than 0.5. In addition, we ensure that the difference

between individuals with race marked white and non-white should

have a difference of less than 0.5. Thus, we use an intersectional fair-
ness criterion. The associated specification is given below, where

h is an indicator for whether an individual is high-income is the
binary classification output of our model:

(E[h | sex=M] − E[h | sex=F] < 0.5) & \

(E[h | race=W] − E[h | race!=W] < 0.5)

In this example, we set the failure threshold probability Δ = 0.15

When run with this specification, the generated bounds cannot

be achieved with the available data. We can then use the iterative

refinement associated with subexpressions to analyze different

components of the specification. The plot corresponding to the

left subexpression is shown in Figure 5a shows that guarantees

cannot converge under the threshold with the given number of data

samples. An auditor can now choose to either reduce the guarantee

(i.e. increase Δ) or increase the threshold. Next, analyzing the right

subexpression, the race group fairness term can be guaranteed

to be under the threshold (Figure 5b). Using this information, an

auditor can make a decision to increase the threshold on the group

fairness term for sex. As a hypothetical, suppose they increase it

from 0.5 to 0.55 and rerun the analysis. OB can provide a guarantee

at this threshold within 870 steps, whereas VF can provide it at

960 steps, demonstrating a relative improvement of about 10.35%.
Additionally, the optimal Δ split across the terms is ≈ (0.135, 0.36 ∗
10

4), which is far from the equal split allocated by VF. The reason for

this split is that increasing the threshold for the first time provides

the optimizer with additional legroom to better distribute the failure

probabilities between the two terms.

4.3 COMPAS Risk Assessment
The Correctional Offender Management Profiling for Alternative

Sanctions (COMPAS) recidivism risk score data is a popular dataset

for assessing machine bias of commercial tools used to assess a

criminal defendant’s likelihood to re-offend. The data is based on

recidivism (re-offending) scores derived from software released by

Northpointe and widely used across the United States for making

5
OB = Optimized Bounds

(a) Group fairness for sex. Difference in ratio of high
income (left subexpression).

(b) Group fairness for race. Difference in ratio of high-
income earners (right subexpression).

Figure 5: (Top) Red dotted lines, the upper bounds of the
value cannot be guaranteed to be under the threshold at
the specified failure probability. (Bottom) Guarantee possible
with given data. Green lines represent the constant term, and
dark blue is the empirical mean.

sentencing decisions. In 2016, Angwin et al. [3] at ProPublica re-

leased an article and associated analysis code critiquing machine

bias associated with race present in the COMPAS risk scores for

a set of arrested individuals in Broward County, Florida, over two

years. The analysis concluded that there were significant differences

in the risk assessments of African-American and Caucasian individ-

uals. Northpointe pushed back in a report [12] firmly rejecting the

claims made by the ProPublica article; instead, they claimed that

Angwin et al. [3] made several statistical and technical errors in the

report. In this case study, we use AVOIR to study the claims of the

two reports mentioned above. We create a materialized view of the

ProPublica dataset by reproducing the preprocessing steps in the
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publicly available ProPublica analysis notebook
6
. We look at “Sam-

ple A” [12], where the analysis of the “not low” risk assessments

using a logistic regression model reveals a high coefficient associ-

ated with the factor associated with race being African-American.

In terms of a fairness metric, this corresponds to false positive

rate (FPR) balance (predictive equality) [41] metrics. The associated

specification in AVOIR grammar would be

E[hrisk | race=African−American & recid=0] /

E[hrisk | race=Caucasian & recid=0] < 1.1

Where hrisk is an indicator for high-risk assessments made

by the black-box COMPAS tool as defined by Angwin et al. [3],

recid is an indicator for re-offending within two years of first

arrest, and a 90%-rule is used as the threshold. We choose a failure

threshold probability of Δ = 0.1, with the optimization run after

every batch of 5 samples. AVOIR finds that when the decisions are

made sequentially, online, the assertion for specification violation

cannot be made with the required failure guarantee.

By analyzing the component subexpressions, one can glean that

AVOIR cannot optimize since the lower FPR in the denominator

(FPR for Caucasian individuals) increases the overall variance and

limits the ability to optimize for guarantees. We follow this analysis

by using the reciprocal specification, i.e.,

E[hrisk | race=Caucasian & recid=0] /

E[hrisk | race=African−American & recid=0] > 0.9

We find that the specification is guaranteed to be violated with

a confidence of over 1 − Δ = 0.9 probability, and AVOIR can detect

this violation within about half the number of available assessments

(3350 steps) when run in an online setting. Figure 6a demonstrates

the progression of the tracked expectation term. Thus, if deployed

with the corrected specification, AVOIRwould be able to alert North-

pointe/an auditor of a violation/potentially-biased decision-making

tool.

The Northpointe report [12] makes several claims about the

shortcomings of this analysis. One of the primary claims is that

Angwin et al. [3] used an analysis based on “Model Errors” rather

than “Target Population Errors”. In fairness specification terms,

this refers to the difference between a False Positive Rate (FPR)

balance vs. False Discovery Rate (FDR) balance, i.e., balancing for

predictive parity over predictive equality. In probabilistic terms, the

difference amounts to comparing Pr[𝑌 = 1|𝑌 = 0, 𝑔 = 1, 2] (FPR)
vs Pr[𝑌 = 0|𝑌 = 1, 𝑔 = 1, 2] (FDR), where 𝑌 refers to the decision

made by the algorithm, 𝑌 refers to the true value, and 𝑔 = 1, 2

reflects group membership [41]. This analysis is run on the dataset

subset dubbed “Sample B”. To test their hypothesis, we reproduce

the corresponding preprocessing steps and run both versions (nu-

merator and denominator being Caucasian) of the corresponding

specification under the same setup as earlier. Despite the point

estimate being within the required threshold, we find that neither

version can be guaranteed with the required confidence in the given

data. Due to the paucity of space, we describe only one of the two

variants with the corresponding figure (Figure 6b).

E[recid=0 | race=Caucasian & hrisk] /

E[recid=0 | race=African−American & hrisk] > 0.9

6
https://github.com/propublica/compas-analysis

(a) (ProPublica) COMPAS, “Sample A” False Posi-
tive Rate Bias specification required to above the
10% =⇒ 0.9 threshold converges to a value that can
be guaranteed to be under the required threshold.

(b) (Northpointe) “Sample B” analysis done by North-
pointe using False Discovery Rate that opposed the
ProPublica reports.

Figure 6: COMPAS dataset case study.

We note that the Northpointe report [12] does not provide con-

fidence intervals for their claim. Further, even though the report

does not release associated code, the point estimates of the False

Discovery Rates (FDRs) match those present in the report, which

increases our confidence in our AVOIR-based analysis.

The back-and-forth exchange has been the subject of much dis-

cussion in academic and journalistic publications [16, 43]. Seminal

work by Kleinberg et al. [29] proved the impossibility of simultane-

ously guaranteeing certain combinations of fairness metrics. While

AVOIR cannot circumvent this problem, its usage can help audit

claimed guarantees on defined metrics. We conclude this case study

by noting that AVOIR lends itself to successful analysis that is not
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possible with the VF implementation available online, which only

provides support for a predefined set of specifications and requires

access to a data-generating function. In addition, we choose 0.1 as

the failure probability because it is one of the thresholds used in

[3]. We set it to the highest used threshold to allow leeway for the

claim by Northpointe. Even under this lax threshold, the analysis

by Northpointe fails.

5 RELATEDWORK
There are a plethora of fairness criteria, and subtle changes in their

definition can change the implications on decision-making [7]. Prac-

titioners need support when selecting, designing, and guaranteeing

fairness for deployed machine learning algorithms. Prior work on

fairness has helped develop nuanced notions and algorithms to help

train more ‘fair’ machine learning models. These include group fair-

nessmeasures such as inter alia, minimizing disparate impact [6, 15],

maximizing the equality of opportunity [22] In contrast with group

fairness notions, causal notions of fairness [31] and individualized

notions of fairness [13] provide alternative statistical mechanisms

for understanding discriminatory behaviors of automated decision

systems. Thomas et al. [38] proposed the Seldonian Framework as a

generic mechanism for model users to design algorithms that help

train machine learning models that can regulate them against un-

desirable behaviors. Yan and Zhang [45] propose a query-efficient

framework to audit an unknown function chosen from a known

hypothesis class of decision-making functions.

We focus on the problem of detecting and diagnosing whether

systems designed under any framework follow any prescribed reg-

ulatory constraints supported within the grammar of AVOIR. That

is, we are agnostic to the framework; instead, we are interested in

testing the adherence of models to specified criteria. We use a prob-

abilistic framework to verify this behavior. Alternative frameworks

such as the AI Fairness 360 [5] provide mechanisms to quantify

fairness uncertainty, though they are restricted to pre-supported

metrics. Uncertainty quantification [20, 21] is an alternative mech-

anism to provide adaptive guarantees. However, existing work is

designed for commonly used outcome metrics, such as accuracy

and F1-score, rather than for fairness metrics. Justicia [19] opti-

mizes uncertainty for fairness metrics estimates using stochastic

SAT solvers but can only be applied to a limited class of tree-based

classification algorithms.

Machine learning testing [47] is an avenue that can expose unde-

sired behavior and improve the trustworthiness of machine learning

systems. Prior work on fairness testing is most closely related to

AVOIR. Fairness testing [18] provides a notion of causal fairness

and generates tests to check the fairness of a given decision-making

procedure. Given a specific definition of fairness, Fairtest [39] and

Verifair (VF) [4] build a comprehensive framework for investigating

fairness in data-driven pipelines. Fairness-aware Programming (FP)

[2] combined the two demands of machine learning testing and

fairness auditing to make fairness a first-class concern in program-

ming. Fairness-aware programming applies a runtime monitoring

system for a decision-making procedure with respect to an initially

stated fairness specification. The overall failure probability of an

assertion is computed as the sum of the failure probabilities of each

constituting sub-expression (using the union bound). FP does not

provide any specific mechanism for splitting uncertainty, and Veri-

fair splits it equally across all constituent elementary subexpressions.
Thus, assertion bounds for subexpressions in both FP and VF are

split inefficiently compared to AVOIR.

6 CONCLUSION & FUTUREWORK
We presented the AVOIR framework to easily define and monitor

fairness specifications online and aid in the refinement of specifica-

tions. AVOIR is easy to integrate within modern database systems

but can also serve as a standalone system evaluating whether black-

box machine learning models meet specific fairness criteria on

specific datasets (including both structured and unstructured data)

as described in our case studies. AVOIR extends the grammar from

Fairness Aware Programming [2] with operations that enhance

expressiveness. In addition, we derive probabilistic guarantees that

improve the confidence with which specification violations are

reported. Through case studies, we demonstrate that AVOIR can

provide users with insights and context that contribute directly to

refinement decisions. To understand the robustness of AVOIR, we

evaluated it along two dimensions: the data/ML model used and

changing parameters (thresholds, fairness definitions). We demon-

strated the robustness of the data/model used by evaluating three

datasets of varying domains and types (criminal justice - COMPAS,

text classification - RateMyProfs, census data - Adult Income). For

robustness to the thresholds, we used varying failure probability

levels (0.05, 0.1, 0.15) in our case studies. Note that any probability

thresholds over these values for the corresponding studies would

converge in fewer iterations, while lower thresholds would require

additional data samples. Our framework builds the foundation for

further improvements in fairness specification, auditing, and verifi-

cation workflows. Although contextual information from AVOIR

makes decisions more straightforward, it is not always clear how to

alter a specification in light of a violation and its relevant context.

To assist in these decisions, we are currently examining mecha-

nisms that suggest edits that are likely to achieve the desired intent

of a model developer. We plan to extend this work to provide intel-

ligent specification refinement suggestions and support distributed

machine learning settings. In addition to improving the usability

of our tools for making fairness specification refinements, we also

envision a more scalable framework. Our case studies looked at a

single model with respect to a single dataset. However, real-world

deployment of machine learning often contains many clients with

models and datasets that may evolve and drift over time. We also

expect to examine efficient monitoring of machine learning behav-

ior for a fairness specification in a distributed context, enabling

horizontal scalability. We believe techniques such as decoupling

the observation of data and reporting results from monitoring the

results are promising and can lead to the desired scalability.
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𝑋 :

(
E[𝑋 ], 𝜀𝑋 , 𝛿𝑋

)
, 𝑌 :

(
E[𝑌 ], 𝜀𝑌 , 𝛿𝑌

)
𝑋 ± 𝑌 :

(
E[𝑋 ] ± E[𝑌 ], 𝜀𝑋 + 𝜀𝑌 , 𝛿𝑋 + 𝛿𝑌

)
𝑋 :

(
E[𝑋 ], 𝜀𝑋 , 𝛿𝑋

)
, 𝑌 :

(
E[𝑌 ], 𝜀𝑌 , 𝛿𝑌

)
𝑋 × 𝑌 : (E[𝑋 ]E[𝑌 ], 𝜀𝑋 𝜀𝑌 + E[𝑋 ]𝜀𝑌 + E[𝑌 ]𝜀𝑋 , 𝛿𝑋 + 𝛿𝑌 )

𝑋 :

(
E, 𝜀, 𝛿

)
,E − 𝜀 > 0

𝑋 −1
:

(
E
−1
, 𝜀

E(E−𝜀 )
, 𝛿

) (Inverse)

𝑋 :

(
E, 𝜀, 𝛿

)
𝑋 −1

:

(
E
−1
, 𝜀

E(E−𝜀 )
, 𝛿

)
, {E − 𝜀 > 0}

(Inverse C)

𝑋 :

(
E, 𝜀, 𝛿

)
,E − 𝜀 > 𝑐

𝑋 > 𝑐 : (𝑇, 𝛿) (True)

𝑋 :

(
E, 𝜀, 𝛿

)
,E + 𝜀 < 𝑐

𝑋 < 𝑐 : (𝐹, 𝛿) (False)

𝑋 :

(
E, 𝜀, 𝛿

)
𝑋 > 𝑐 : (𝑇, 𝛿), {E − 𝜀 > 𝑐}

(True C)

𝑋 :

(
E, 𝜀, 𝛿

)
𝑋 < 𝑐 : (𝑇, 𝛿), {E + 𝜀 < 𝑐}

(False C)

𝜓1 : (B1, 𝛿1),𝜓2 : (B2, 𝛿2)
𝜓1 ∧𝜓2 : (B1 ∧ B2, 𝛿1 + 𝛿2)

(and)

𝜓1 : (B1, 𝛿1),𝜓2 : (B2, 𝛿2)
𝜓1 ∨𝜓2 : (B1 ∨ B2, 𝛿1 + 𝛿2)

(or)

𝜓1 : (B1, 𝛿1), {𝐶11,...,1𝑘 },𝜓2 : (B2, 𝛿2), {𝐶21,...,2𝑚}
𝜓1 ∧𝜓2 : (B1 ∧ B2, 𝛿1 + 𝛿2), {𝐶11,...,1𝑘 ,𝐶21,...,2𝑚} (and C)

𝜓1 : (B1, 𝛿1), {𝐶11,...,1𝑘 },𝜓2 : (B2, 𝛿2)
𝜓1 ∨𝜓2 : (B1 ∨ B2, 𝛿1 + 𝛿2), {𝐶11,...,1𝑘 } ∨ {𝐶21,...,2𝑚} (or C)

Figure 7: Inference rules used to guarantees for expres-
sions.The inference rules for each compound expression
build on the union bound, triangle inequality, and structural
induction approach described by [4]. C: Constraint.

A INFERENCE RULES
In Figure 7, we provide the rules used to determining the constraints

and guarantees for a specification. We represent 𝑋 ⊙ 𝑌 : (𝐸, 𝜀, 𝛿) ≡
Pr ( |E[𝑋 ] ⊙ E[𝑌 ] − 𝐸 | ≥ 𝜀) ≤ 𝛿 where ⊙ represents a binary oper-

ator. Constraints are represented in {}. The proof of correctness
for each inference rule starts from the assumptions above the hori-

zontal line and derives the assertions below. These proofs use ideas

similar to those in [4]. We reproduce the proofs in Appendix A.1

here for completeness. Note that the assertions in the base case

(elementary subexpressions) can be arrived at by applying AIN.

A.1 Inference rules with Constraints
In Section 3.3 we provided the proofs for 𝑋 ± 𝑌 , 𝑋 > 𝑐 . In the

following text, we provide the remaining proofs.

Product Starting with 𝜙𝑋 , 𝜙𝑌 First, from union bound, both of these

hold true with probability at least 1 − 𝛿𝑋 − 𝛿𝑌 . Then,
|E[𝑋 ] | = |E[𝑋 ] − E[𝑋 ] + E[𝑋 ] |

≤ | |E[𝑋 ] | + |E[𝑋 ] + E[𝑋 ] | ≤ | |E[𝑋 ] | + 𝜀𝑋

|E[𝑋 ]E[𝑌 ] − E[𝑋𝑌 ] | = |E[𝑋 ]E[𝑌 ] − E[𝑋 ]E[𝑌 ] |

= |E[𝑋 ] (E[𝑌 ] − E[𝑌 ]) + E[𝑌 ] (E[𝑋 ] − E[𝑋 ]) |

≤ |E[𝑋 ] | | (E[𝑌 ] − E[𝑌 ]) | + |E[𝑌 ] | | (E[𝑋 ] − E[𝑋 ]) |

≤ |E[𝑋 ] |𝜀𝑌 + |E[𝑌 ] |𝜀𝑋
≤ |E[𝑋 ] |𝜀𝑌 + (|E[𝑌 ] | + 𝜀𝑌 )𝜀𝑋
= |E[𝑋 ] |𝜀𝑌 + |E[𝑌 ] |𝜀𝑋 + 𝜀𝑋 𝜀𝑌

where the first step follows as 𝑋,𝑌 are Bernoulli r.vs. Therefore,

𝑋 × 𝑌 : (E[𝑋 ]E[𝑌 ], 𝜀𝑋 𝜀𝑌 + E[𝑋 ]𝜀𝑌 + E[𝑌 ]𝜀𝑋 , 𝛿𝑋 + 𝛿𝑌 )
Inverse/Inverse C Assume 𝑋 :

(
E, 𝜀, 𝛿

)
and E − 𝜀 > 0. In the

constrained case, we start with only the prior assumption. Then,

|E[𝑋 ] | = |E[𝑋 ] − E[𝑋 ] + E[𝑋 ] |

≤ |E[𝑋 ] − E[𝑋 ] | + |E[𝑋 ] | ≤ 𝜀𝑋 + |E[𝑋 ] |

i.e., |E[𝑋 ] | ≤ 𝜀𝑋 + |E[𝑋 ] |. Also,

|E[𝑋 ]−1 − E[𝑋 ]−1 | =
�����E[𝑋 ]−1 − E[𝑋 ]−1E[𝑋 ]E[𝑋 ]−1

�����
≤ 𝜀

|E[𝑋 ] | |E[𝑋 ] |
≤ 𝜀

|E[𝑋 ] | (E[𝑋 ] − 𝜀𝑋 )
VF adds 𝐸 [𝑋 ]−𝜀𝑋 > 0 as a precondition; AVOIR as a post-constraint.

Boolean Operators. Starting from 𝜓1 : (𝑏1, 𝛿1), 𝜓2 : (𝑏2, 𝛿2), we
can apply the union bound for𝜓1 ∧𝜓2,𝜓1 ∨𝜓2 to derive the rules

for and/or. Similarly, constraints follow the semantics specified by

the rules as they also follow from the union bound.

A.2 Inferred Optimization Problem
For a given overall specification 𝜓 , suppose (𝜀𝑖 , 𝛿𝑖 ), 𝑖 ∈ {1, . . . , 𝑛}
represents the concentration bounds associated with each con-

stituent elementary subexpression. Using the inference rules, we

can derive the overall 𝛿𝑇 =
∑
𝑖
𝛿𝑖 , along with a set of (say) 𝐾 con-

straints

𝑔𝑘 (𝜀1, . . . , 𝜀𝑛,E[𝑋1], . . . ,E[𝑋𝑛]) ≤ 𝜀𝑘
where 𝜀𝑘 =

���𝑐𝑘 − E[𝑓 (E[𝑋1], . . . ,E[𝑋𝑛])]
���

denotes the maximum allowed margin for the k
th
subexpression

of form <ETerm> <comp-op> c). The objective is to minimize the

overall failure probability 𝛿𝑇 . The overall optimization problem can

then be formulated as shown in 1, having 𝑛 optimization variables

𝛿𝑖 and 2𝑛 +𝐾 constraints (bounds on 𝛿𝑖 provide the 2𝑛 constraints).

A developer using AVOIR inputs a required acceptable upper bound

of failure probability Δ. If the solution to the optimization prob-

lem 𝛿∗
𝑇

=
∑
𝑖 𝛿𝑖 ≤ Δ, then the optimization can conclude with

the required confidence in the proved guarantee. At this point,

the developer may choose to terminate AVOIR. However, using

Corollary 4.1, they may continue to run and refine the estimates.
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Metric Name Definition/DSL

Statistical Parity [13]

Pr[𝑅 |𝑆 ] = Pr[𝑅 |¬𝑆 ]

E[𝑟 |𝑠 ]/E[𝑟 |!𝑠 ] < 𝑐

Predictive Parity [8]

Pr[𝑌 |𝑅, 𝑆 ] = Pr[𝑌 |𝑅, 𝑆 ]

E[𝑦 |𝑟, 𝑠 ] − E[𝑦 |𝑟, 𝑠 ] > 𝑐

Equal Opportunity [22]

Pr[¬𝑅 |𝑌, 𝑆 ] = Pr[¬𝑅 |𝑌,¬𝑆 ]

E[!𝑟 |𝑦, 𝑠 ] − E[!𝑟 |𝑦, !𝑠 ] < 𝑐

Equalized Odds [22]

Pr[𝑅 |𝑌 = 𝑖, 𝑆 ] = Pr[𝑅 ]𝑌 = 𝑖,¬𝑆 ], 𝑖 = 0, 1

(E[𝑟 |𝑦 = 0, !𝑠 ] − E[𝑟 |𝑦 = 0, 𝑠 ] > 𝑐0 ) &
(E[𝑟 |𝑦 = 1, !𝑠 ] − E[𝑟 |𝑦 = 1, 𝑠 ] > 𝑐1 )

Table 2: Examples of supported metrics.

B CONCENTRATION BOUNDS
Theorem 1 provides a mechanism for choosing the stopping time

using arbitrary methods for a fixed 𝛿 . In general, any adaptive

concentration inequality suffices; we use AINH However, we use

confidence intervals to visualize the evolution of sub-expressions

(and overall specification) over the sequence of observations. To do

so, we require an additional result.

Theorem 4. [48, Proposition 1, Lemma 1] Let 𝑆𝑛 =
∑𝑛
𝑖=1 𝑋𝑖 be a

random walk from i.i.d. random variables 𝑋1, . . . , 𝑋𝑡 ∼ 𝐷 . For any
𝛿 > 0, Pr[𝑆T ≥ 𝑓 (T )] ≤ 𝛿 for any stopping time T if and only if
Pr [∃𝑛, 𝑆𝑡 ≥ 𝑓 (𝑡)] ≤ 𝛿

Corollary 4.1. For 𝛿 > 0, Pr[|ET [𝑋 ] − E[𝑋 ] | ≤ 𝜀 (𝛿,T)|] ≥
1 − 𝛿 for any stopping time T if and only if

Pr

[
∀𝑡, |E𝑡 [𝑋 ] − E[𝑋 ] | ≤ 𝜀 (𝛿, 𝑡) |

]
≥ 1 − 𝛿

Corollary 4 follows directly from applying Theorem 4 to Theo-

rem 1. Intuitively, Theorem 1 holds since we can choose an adver-

sarial stopping rule for T that terminates as soon as the boundary

for 𝜀 (𝛿, 𝑡) is crossed [48]. Thus, when we establish a bound with

a stopping rule, the bound will hold prior to and after the stop-

ping rule is enforced. Corollary 4.1 implies that once we choose an

optimal bound for each subexpression, we can extend the bounds

derived using Theorem 1 to following observations with continued

guarantees for subexpressions.

B.1 Proof of Theorem 2 for Specifications
Consider any specification 𝜓𝑘 . Let 𝜓

𝑡
𝑘

: ( ˆ𝑏𝜓𝑘 (𝑡), 𝛿𝜓𝑘 (𝑡)), where
ˆ𝑏𝜓𝑘 (𝑡) ⊆ {𝑇, 𝐹 } is the inferred value and 𝛿𝜓𝑘 (𝑡) corresponds to the
confidence for the assertion at time 𝑡 . Let the elementary subexpres-

sions involved be 𝑋𝑘1 , . . . , 𝑋𝑘𝐷 corresponding to the index multiset

B𝑘 = {{𝑘1, . . . , 𝑘𝐷 }}. Denote 𝑏𝜓𝑘 as the true value of 𝜓𝑘 , and 𝛿𝜓𝑘
as the inferred threshold at stopping time T . From INFER, we have

ˆ𝑏𝑘 (𝑡), 𝛿𝜓𝑘 (𝑡) = INFER(𝜙 t
X
k
1

, . . . , 𝜙 t
X
k
D

) (9)

Pr[∃𝑡 ≥ 1, 𝑏𝑘 ∉ ˆ𝑏𝑘 (𝑇 )]

≤ Pr

[
𝐷⋃
𝑖=1

∃𝑡 ≥ 1,¬𝜙𝑡𝑋𝑘𝑖

]
(From 9)

≤
∑︁
𝑖∈B𝑘

Pr

[
∃𝑡 ≥ 1,¬𝜙𝑡𝑋𝑘𝑖

]
(union bound)

=
∑︁
𝑖∈B𝑗

Pr

[
∃𝑡 ≥ 1, |E𝑡 [𝑋𝑘𝑖 ] − E𝑡 [𝑋𝑘𝑖 | > 𝜀𝑋𝑘𝑖 (𝑡)

]
≤

∑︁
𝑖∈B𝑗

𝛿𝑋𝑘𝑖
(elementary subexpressions)

≤ 𝛿𝜓𝑘 (applying 8 for 𝑡 = T )

Thus, 𝑏𝜓𝑘 (𝑡) is a 1 − 𝛿𝜓𝑘 confidence sequence for 𝑏𝜓𝑘

C TERMINATION CRITERION FOR AVOIR
Corollary 3.2. Under mild conditions, AVOIR terminates in finite

steps with an assertion over the required specification.

Proof. We know that the stopping time T ≤ T +
, the stopping

time for AVOIR. Thus, AVOIR would terminate whenever Verifiar

can. For completeness, we provide the conditions under which

Verifair terminates. Note that 𝑐 ∈ R corresponds to a constant

threshold involved in specification, also presented in the grammar

and bound proagation rules.

• For every subexpression 𝐶𝑘 occurring in the specification

such that it is involved in the inverse or inverse constr. rules

(i.e., E[𝐶𝑘 ]−1), E[𝐶𝑘 ] ≠ 0, 𝐶𝑘 ≠ 0

• For every subexpression 𝐶𝑘 such that it occurs a True/False

type inequality (such as 𝐶𝑘 > 𝑐), E[𝐶𝑘 ] ≠ 𝑐 , 𝐶𝑘 ≠ 𝑐

□

D SUPPORTED METRICS
We provide a non-exhaustive list of statistical group-based fairness

criteria and show an exact/approximate equivalent in the AVOIR

DSL in Table 2. We use the notation from Table 1, assuming that

the return value 𝑅 is a Bernoulli r.v. We assume that the decision

function 𝑓 tracked by AVOIR as a signature that takes 𝑋,𝐺,𝑌 as

input and produces 𝑆 or 𝑑 as output. Note that in their python

implementation, = would be replaced by == and | by the given

keyword.
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