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ABSTRACT

Natural disasters such as loods, forest ires, and hurricanes can

cause catastrophic damage to human life and infrastructure. We

focus on response to hurricanes caused by both river water lood-

ing and storm surge. Using models for storm surge simulation and

lood extent prediction, we generate forecasts about areas likely

to be highly afected by the disaster. Further, we overlay the simu-

lation results with information about traic incidents to correlate

traic incidents with other data modality. We present these results

in a modularized, interactive map-based visualization, which can

help emergency responders to better plan and coordinate disaster

response.
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1 INTRODUCTION

Identifying standards and metrics for disaster resilience is a major

challenge of considerable interest to federal agencies [13]. Com-

munities identify expected changes in vulnerabilities to natural

disasters and adapt their strategies accordingly [15]. Mitigating re-

sponses can be either pre- or post-disaster. Post-disaster response in-

volves identifying the afected areas using multimodal data (e.g. un-

structured text, location gazetteers, images), identifying the needs

of the afected victims, and matching them with irst responders [8].

In this work, we focus on the impact of loods and hurricanes

induced by storm surge. Post-disaster response to these disasters

requires image sources such as Synthetic Aperture Radar (SAR)

imagery. We preprocess the images such that water corresponds

to areas darker in intensity, and can be detected by an appropriate

outlier detection framework (e.g. [10]). For forecasting, storm surge

simulation results can be produced using the ADCIRC (ADvanced

CIRCulation) model [4]. It is a inite element model used by a num-

ber of agencies and has been used for hindcasting prior hurricane

events, as well as a predictive tool for designing/planning against

future storms. Model predictions have shown good agreement with

measured ield data for a number of applications, including hind-

casts of high water marks for many recent and historic storms [3].

By overlaying the predicted storm data on the true processed SAR

image, we establish the correctness of the predictive storm models.

Additionally, the impact of the storm can be further quantiied

by retrieving co-located traic incidents. To establish the impor-

tance of responding to storm predictions, we overlay, over the SAR

image, traic data that has been collected from the same time and

geolocation range as the storm. The traic data is a subset of a

larger dataset collected by Moosavi et al. [11]. The dataset contains

incidents related to low congestion and accidents, which can be

used as indicators of disaster impact.

2 RELATEDWORK

Flood Mapping: Classical lood-mapping techniques rely upon

various kinds of thresholding [14]. Recently, more advanced meth-

ods model the image as graphs and ind looded regions by using cut

based, machine learning based and human input guided lood map-

ping [9]. In our work on lood mapping, we use a state-of-the-art
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approach which models the lood mapping problem in an attributed

graph outlier detection framework [10].

Data Visualization: Previous work on visualizing structured

input on maps has been done using multiple layers with diferent

information [7, 8]. Following a similar approach, our tool visualizes

the data on water height, water velocity and traic information into

separate layers, which can be viewed independently and overlaid

on each other. Users can also temporally navigate through multiple

hours of data to visualize the evolution and progress of the storm.

Disaster forecasting: Forecasting for hurricane like disasters

can be done with two major classes of models - statistical models

that rely on global wind and forecasting patterns, and purely dy-

namical models that rely on the physics of luid motions. The latter

class is more popular today since they use iner spatial resolution

and sophisticated physical process representation to improve the

accuracy [16]. We utilize a inite element ADCIRC model, known

to have good agreement with measured ield data in a number of

storms, such as Hurricanes Rita and Katrina [2, 6].

3 METHOD

Figure 1 shows the overall architecture and pipeline of our current

disaster relief framework. This version does not show the social

media data, but it is present in our previous work [8].

MapBox Map

Social Media Data

Flood Map

Water Height

Water Velocity

Traffic Incidents
Flood Mapping using Satellite Images

Geoparsing and Plotting Tweets

Storm Surge Model Simulation

Traffic Data Retrieval and Plotting

Figure 1: Let: Data generation. Right: Visualization layers.

3.1 Data sources

Synthetic Aperture Radar (SAR) imagery is suitable for lood map-

ping (predicting if an area is looded or not) thanks to its ability to

provide all-sky observations regardless of unfavorable illumination

and weather conditions, and its sensitivity to water. The satellite im-

ages in this demo are acquired by the Sentinel-1 C-band SAR in the

Interferometric Wide swath (IW) modes. The Sentinel-1 includes

two identical satellites enabling a revisit time of 6 days. The spatial

resolution reports adjacent targets Π with a distance of 20 meters in

range and 23 meters in azimuth direction, that are discernable. The

image has two polarizations deined by the SAR signal direction,

namely VV (vertically transmitted and vertically received) and VH

(vertically transmitted and horizontally received). Collected High-

resolution Ground Range Detected (GRDH) product is processed

by using the Sentinel Application Platform (SNAP) from the ESA1,

with standard procedures of radiometric calibration and terrain

correction. The digital pixel values in GRDH are then converted

1European Space Agency

into calibrated backscatter intensity in decibel units. Elevation data

from the National Elevation Dataset with a 1/3 arc-second spacing

is used to correct SAR geometric distortion. After preprocessing,

the SAR intensity is used for loodwater delineation. Given the

smooth surface and high dielectric constant, water shows weaker

SAR back scattering signal, thus corresponding to the darker areas

in the intensity image.

The storm surge model domain used for simulations includes the

Western North Atlantic, the Gulf of Mexico, and a large swath of

the Texas loodplain (see Figure 2). The domain consists of approxi-

mately 6.5 million elements, with sizes ranging from approximately

17 km in the deep ocean down to 10 m along the coast. Meteoro-

logical forcing for the model, which includes wind and pressure

ields, are obtained from Ocean Weather Inc. (courtesy of the Com-

putational Hydraulics Group at UT Austin) and/or the National

Hurricane Center’s łbest trackž data [12]. Model output includes

piecewise linear surfaces of the water surface elevation and depth-

averaged velocities deined over the entire extent of the domain at

time snaps of 1 hour.

Traic events shown in this demonstration have been retrieved

from a dataset which includes traic events since Aug 2016 [11]. The

dataset includes weather events, traic accidents and congestions,

and construction. For the purpose of the demonstration, we display

two types of events on the geographical map likely to have been

caused by a weather condition - accidents and congestion.

Figure 2: Let: Extent of model domain used. Right: Model

details along the Texas coast.

3.2 Web Visualization

The storm surge model outputs triangulated meshes of vertices

from which bathymetry (water depth) and velocity can be inter-

polated. However, each of these meshes is of very large size (ile

size > 100 MB for each hour of data) and it is not feasible to load

a new mesh into a web browser on every request. To overcome

the size limitation, we use a simple sampling strategy to get an ap-

proximation of the mesh. We sample a regular grid of points within

the bounds of the mesh. At each of the points, we compute the

values of interest - bathymetry, velocity_x and velocity_y. Finally,

we split these values into 256 levels, so that they can be encoded as

(R, G, B) colours into an image. The image ile generated from this

process is used as a texture map for the visualization. The range of

each of the parameters along with the bounds of the mesh is stored

in a separate json ile which can be loaded as needed. Using the

texture map, the geometry of the visualization can be generated
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Figure 3:Right: Example results of the ADCIRC storm surge

model output compared to recorded data at NOAA’s Packery

Channel station. Let: Station location shown in red.

Figure 4:Right: Example results of the ADCIRC storm surge

model output compared to recorded data at NOAA’s Seadrift

Channel station. Let: Station location shown in red.

with WebGL at run time with an image ile < 1 MB in size. This

speeds up the visualization process.

The visualization is done using WebGL/ThreeJS2 based fragment

shaders for the bathymetry, and 3D cones for the water velocity. In

ThreeJS, it is possible to use BufferGeometry objects tomap texture

images to screen coordinates. We create a custom object composed

of triangles, where each triangle is projected to the correct screen

coordinates as per the Web Mercator projection [1]. We generate

UV texture maps to correspond to the vertices so that the height

texture is mapped to the correct regions on the Mapbox3 map.

4 DEMONSTRATION

In the demo presented here, we hope to aid the process of disaster

response and relief. Users or irst responders using our tool have

access to structured traic incident data, and can obtain informa-

tion about the best evacuation routes. In general, our pluggable,

modularized framework enables any spatio-temporal tagged data

(e.g., tweets) extracted by an IR system to be added to its overlay

visualization.

Figures 3 and 4 demonstrate the accuracy of the storm surge

model for Hurricane Harvey. In this hindcasting, we see that the

ADCIRC models capture the true water elevation accurately.

Figure 5 shows screenshots of all the controls ofered in our

framework. The diferent layers listed on the right can be toggled

for viewing diferent aspects of the visualizations and a slider on

2https://threejs.org/
3https://www.mapbox.com/

Figure 5: Top: Components of the interactive visualization.

Botom: Road accident information.

Figure 6: Storm visualization. let: Approach, Right: Retreat

the top-right can be used to scroll through diferent hours from the

start of the storm. Darker (blue) colours (and longer length for wind

cones) indicate a higher value. Finally, hovering over the markers

provides information about traic incidents at that location.

We overlay the visualization of the sampled storm surge data

onto an interactive map. Figure 6 is a rendering of the evolution of

the storm across the time frame.We can see some hotspots of high

velocity and high depth in motion as the storm approaches land.
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Figure 7: Top: Increased incidents during storm approach.

Botom: Fewer incidents during retreat.

Figure 8: Let: Storm Surge. Right: Flood Map. Darker

colours indicate higher water levels/higher lood impact

Next, we magnify the predictions of the storm surge model

around the Houston area. We observe that there is an increase

in traic incidents initially as the storm moves towards the coast.

They reach a peak around the midway point of the progress of

the storm. The probable reason for this is that residents of this

region begin evacuating, and inish evacuation over time. However,

evacuation warnings were not issued for Harvey [5]. This may

help explain the trends observed in the data. Figure 7 shows traic

incidents during the peak of the storm in comparison to the period

that the storm was retreating.

Finally, we compare the post processed lood mapped data with

the predictions on areas with high water elevation from the storm

surgemodel. Figure 8 shows an example at highmagniication levels

in a coastal region. There is reasonable correspondence between

the intermediate storm surge and inal lood map data near the

coast. But as we go farther away from the coast (bottom right of

the map), the storm surge model has lowered resolution and cannot

predict the looded areas accurately.

5 CONCLUSION

Our proposed interactive visualization framework for disaster relief

and response demonstrates the efectiveness of storm surge mod-

elling as an efective tool for early warning systems. By overlaying

traic data, we are able to see the impact that the storm has as it

evolves. Integrating this system with post-disaster lood maps as

well as real-time information from social media can give rise to an

efective disaster management and response framework.
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