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ABSTRACT
Dynamically extracting and representing continually evolving knowl-
edge entities is an essential scaffold for grounded intelligence and
decision making. Creating knowledge schemas for newly emerging,
unfamiliar, domain-specific ideas or events poses the following chal-
lenges: (i) detecting relevant, often previously unknown concepts
associated with the new domain; and (ii) learning ontological, se-
mantically accurate relationships among the new concepts, despite
having severely limited annotated data. To this end, we propose a
novel LSTM-based framework with attentive pooling, BOLT-K, to
learn an ontology for a target subject or domain. We bootstrap our
ontology learning approach by adapting and transferring knowl-
edge from an existing, functionally related source domain. We also
augment the inadequate labeled data available for the target do-
main with various strategies to minimize human expertise during
model development and training. BOLT-K first employs semantic
and graphical features to recognize the entity or concept pairs likely
to be related to each other, and filters out spurious concept combi-
nations. It is then jointly trained on knowledge from the target and
source domains to learn relationships among the target concepts.
The target concepts and their corresponding relationships are sub-
sequently used to construct an ontology. We extensively evaluate
our framework on several, real-world bio-medical and commercial
product domain ontologies. We obtain significant improvements
of 5-25% F1-score points over state-of-the-art baselines. We also
examine the potential of BOLT-K in detecting the presence of novel
kinds of relationships that were unseen during training.
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1 INTRODUCTION
Ontologies, taxonomies or knowledge graphs represent an effective
way of organizing massive amounts of real world information into
a structured format. In particular, domain-specific ontologies are
valuable resources that formally model the conceptual vocabulary
of a given domain. Building accurate ontologies from trustworthy
sources [36, 51, 65, 66, 69] with sufficient coverage of concepts and
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relationships among them is time-consuming and labor-intensive. A
number of approaches to automate this process have been proposed.
For instance, building ontologies based on statistical, linguistic and
graphical features [45, 68, 76]; enriching existing ontologies with
domain-specific information [63]; and embedding-basedmethods to
complete knowledge graphs [2, 23, 31, 47, 61, 62, 70, 73, 79, 80]. Nev-
ertheless, they only utilize textual corpora and other accompanying
information from the specific domain under consideration. They do
not leverage the abundant, hierarchically structured knowledge that
might be available in functionally and/or semantically similar or
related subjects or domains. This is especially valuable in fields rang-
ing from epidemiology to crisis response, and from bio-medicine to
commercial product catalogs, where emerging knowledge can be
frequent and crucial. For instance, there is no semantically coherent
ontology associated with the recently surfaced human disease of
Zika fever, knowledge of which is evolving to-date. It will therefore
be highly useful to take advantage of its connections to similar
vector-borne diseases like Dengue or Malaria, for which well orga-
nized and annotated information from domain experts is available.
Further, there are multiple challenges associated with building com-
prehensive ontologies for e-commerce product platforms [11, 29].
Numerous closely related product catalogs often have incomplete or
incorrectly labeled attributes. Using annotations from semantically
similar product listings (such as products from the same category)
can help embellish existing listings with missing attributes, as well
as detect errors in the labeled attributes. In our work, we bootstrap
the task of learning ontologies for novel domains or subjects, by
adapting and transferring existing knowledge from related domain
ontologies. This also alleviates the requirement of human expertise
to obtain sufficient labeled data on the newly emergent subject.

A crucial task in constructing ontologies is learning hierarchical
relationships among multiple concepts from unstructured text. This
task requires large amounts of annotated training data associated
with ontological concepts and their corresponding relationships.
This process is time-consuming, expensive, and necessitates a sig-
nificant amount of expert knowledge to categorize associations
in niche domains that a layperson is unlikely to know about. To
resolve this issue, Mintz et al [42] heuristically aligned texts with
knowledge graphs via distant supervision to automatically generate
training examples. Lin et al [32] applied distant supervision with
sentence-level selective attention, while Zeng et al [79] coupled
it with multi-instance learning to learn relationships. However
such efforts either do not address the problem of the highly imbal-
anced occurrence of different relationships [53], or require a sizable
number of sentences connecting related entities. Another popular
strategy to address the issue of insufficient labeled data is data
augmentation. This technique artificially expands labeled training
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sets by generating new data points or transforming the existing
ones, such that the class label properties are preserved [22, 35, 52].

In this paper, we propose a framework BOLT-K – Bootstrapping
Ontology Learning via Transfer of Knowledge. It uses a long short
term memory (LSTM) neural network with attentive pooling, to
learn an ontology hierarchy for a given target domain. We first
obtain all the concepts that constitute the target ontology. We sub-
sequently devise an approach based on semantic and topological
attributes to identify the concept pairs likely to be connected by a
relationship, and eliminate the remaining spurious combinations.
To address the issue of limited relationship-labeled training data,
we utilize publicly available textual corpora and ontological infor-
mation from a functionally similar source domain. We also employ
data augmentation techniques to generate additional training exam-
ples for the target domain. We train our model jointly on the target
and source hierarchy information, by sharing the hidden feature
representations and appropriate model parameters among them.
Finally, we predict ontological relationships between the concepts
of the target domain, to construct an ontology for it. We extensively
evaluate our framework on several real-world datasets, highlight-
ing the transferability of concepts across comparable subjects. We
show that BOLT-K can significantly improve the quality of learned
ontologies over state-of-the-art baselines, when bootstrapped with
relevant knowledge from a similar subject or domain.

To summarize, the key contributions of our work are:

• We develop a flexible and generalizable framework, BOLT-K,
to automatically learn ontologies for contemporary novel
or emergent sub-domains of rapidly evolving fields such as
bio-medicine, epidemiology, e-commerce and crisis response.
• We propose to transfer existing knowledge from functionally
similar domains, and augment the insufficient labeled target
training data. This significantly lessens the need for manual
expertise during model development and training.
• We extensively evaluate BOLT-K on real-world datasets
for various sub-domains within bio-medicine and product
graphs. We also show BOLT-K’s capability in detecting novel
types of relationships that were unseen during training.

2 RELATEDWORK
The following lines of research are related to our work: (i) augmen-
tation of textual training data; (ii) learning ontological relationships;
and (iii) transfer learning for natural language processing tasks.

Training data augmentation: This is a common and success-
ful technique in the image processing literature [12, 52, 55], and is
slowly gaining popularity in NLP applications [22, 35, 52]. A caveat
though, is that supplementing text data via transformations, inter-
polations or affine perturbations is not as straightforward as per-
forming these enhancements for images. Kafle et al [24] proposed
two methods of data augmentation for visual question answering:
(i) using semantic segmentation annotations with labels to synthe-
size certain kinds of questions; and (ii) training a stacked LSTM
model to generate questions about images. A common technique of
augmenting text is to replace words or phrases with their synonyms
from a thesaurus [82], or with appropriate n-grams from a language

model [52]. Another technique is to translate sentences into a sec-
ond language, and then translate them back into the original lan-
guage to obtain a slight variation of the original sentence [13, 54, 71].
Progress has also been made in developing generative models based
on variational autoencoders for sentence generation [7, 21, 58]. In
this work, we employ a combination of text substitutions for data
augmentation, as specified in Section 4.2.

Relation Extraction: Deep learning models such as convolu-
tional neural networks (CNNs), recurrent neural networks (RNNs)
and graph-RNNs have been successful in automatically learning
features for extracting semantic relations between a pair of enti-
ties [49, 57, 72, 79]. A number of approaches have also employed
attention mechanisms in conjunction with RNNs for relation ex-
traction and classification [32, 84]. Another way of solving this
problem is by formulating it as a link prediction problem in knowl-
edge graphs [2, 23, 31, 47, 61, 70, 73]. Since our method addresses
relation extraction at the level of a sentence or a group of sentences,
we find that a bidirectional LSTM with attention-based pooling
works well for our purpose. Similar to our work, there have been
efforts to extract relations with an insufficient number of labeled
examples per relationship type. Yuan et al [78] formulated this as a
one-shot classification problem and solve it using a convolutional
siamese neural network. Levy et al [30] turned it into a reading
comprehension problem by associating multiple textual questions
with each relation type and learning answers for them.

Transfer learning: Zhang et al [81] have surveyed various
cross-dataset transfer learning techniques. This includes the kind
of knowledge transfer paradigm that our work addresses, i.e. mini-
mizing the generalization error in the target domain with the help
of training instances from two disjoint source and target domains.
Transfer learning has been highly useful in low-resource domains
such as bio-medicine [26, 40]. Ganin et al [17] introduced a rep-
resentation learning approach for domain adaptation by adding
a gradient reversal layer in a feed forward neural network. They
trained their model on a document sentiment classification task
using labeled data from a source domain and unlabeled data from
a target domain. Long et al [34] presented another approach that
learns an unsupervised residual function to adapt classifiers from a
source domain to a target domain. Similar to our work, prior efforts
addressed the sharing of structural parameters across multiple task
domains [1]. Yang et al [74] developed a framework for three differ-
ent types of transfer learning paradigms in hierarchical RNNs for
a sequence tagging task; namely cross-domain, cross-application
and cross-lingual transfer. Knowledge transfer has also been used
to inform inter-related NLP tasks such as named entity recognition,
part-of-speech tagging, chunking and word segmentation [9, 48].

3 PROBLEM FORMULATION
We propose to learn an ontology for a target domain for which
labeled information is very limited, by transferring potentially use-
ful semantic and ontological knowledge from a distinct but related
source domain.We refer to each element of the ontologies associated
with these domains as an entity or a concept.

The inputs to our problem are:
(1) A knowledge ontology S consisting of entities, categories and

labeled relationships SR among them, for a source domain
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(2) A small number of concept pairs that will be part of the
ontology T for the target domain. These have been labeled
with their respective relationship type from a set of target
relationship types TR . Since the target is an emergent do-
main with little to no labeled information available, we only
require at least one labeled concept pair per relation type
in TR . Note that though S and T are from related domains,
there may or may not be relationship types common to both
S and T . This is not a requirement for our method.

(3) Corpora of text documents whose sentences contain occur-
rences of the concepts in S and concepts associated with the
target domain, which are to be part of T . These documents
can either be expert-authored such as research papers, or
can be from public resources such as news articles or ency-
clopedias. We utilize the text corpora associated with the
target domain to extract the set of concepts to be inserted
into T , as explained in Section 4.1.

We extract the sentences containing co-occurrences of the con-
cept pairs linked by relationship types in SR as part of training data
from the source. However, it is unlikely for a whole lot of informa-
tion to be available about the emergent, target domain concepts
in the corpora. Thus as part of the target training data, we restrict
BOLT-K to use at least one and at most five labeled instances per
relationship type in TR . These would contain co-occurrences of a
small number of target concept pairs. We employ data augmenta-
tion techniques to enhance this limited amount of training data
(Section 4.2). Our BOLT-K approach thus makes use of (i) the abun-
dant labeled relationship information from S and; (ii) the minimal
amount of labeled relation information from T , to learn relation-
ships between various pairs of concepts for the target domain.

4 THE BOLT-K FRAMEWORK
In this section we describe our proposed BOLT-K approach (Fig-
ure 1). Among the set of concepts that are to be part of the target
ontology T , we first identify the pairs of concepts that are likely to
be related to each other in T , and filter out the remaining spurious
pairs. Next, we augment the limited number of available training
instances that are labeled with the target relationships fromTR . We
then use this dataset along with the annotated information from
S to learn the relations between the remaining target concepts in
T . The identified concept pairs for T and the relationship types
between them that have been predicted by our model can be used
to construct a complete ontology for the target domain T .

We now describe each step of our BOLT-K framework in detail.

4.1 Filtering Unrelated Target Concept Pairs
This is the first step of our algorithmic pipeline. We acquire the
entity and category concepts from the given source ontology struc-
ture S . We assume for the purpose of simplification, that a list of
the concepts that need to be a part of the target ontology T has
been provided to us by a domain expert. Alternatively, we can also
use emerging entity extraction algorithms [10, 14] to locate and
extract concepts from the target text document corpus. This corpus
can consist of news reports, laboratory records or research articles
authored by domain experts, related to the target topic. It is highly
inefficient (quadratic complexity) and unnecessary to consider all

Target Text Corpus + Limited 
labeled relationship data

Identify relevant target 
ontology concepts

Find potentially related 
target concept pairs

Augment target text 
training data

Source Ontology 
+ Text Corpus

Extract related 
source concept pairs 

& associated text

Learn target relationships via joint training 
with source ontology

Build target ontology 

Figure 1: Pipeline of our BOLT-K framework

possible pairs of target concepts while learning relationships be-
tween them. Hence, our next step is to identify the concept pairs
likely to be linked by a relationship and filter out the remaining
pairs. Our empirical investigations (Figure 3) show that using only
semantic information is insufficient to capture the likelihood of a
relationship between pairs of target concepts. Hence, we also incor-
porate structural information by modeling the target concepts as a
graph. We construct a weighted concept graph TG , whose nodes
consist of the concepts that are to be a part of the target ontologyT .
We link two nodes by an edge if they have co-occurred together at
least once in a document in the target text corpus, withinW words
of each other. Inspecting a sample of documents in our corpora
showed that related concepts often co-occur not in the same sen-
tence, but in consecutive sentences. Since the length of an average
sentence is about 10-12 words, we useW = 25 to indicate adjacent
sentences. The weight of an edge is given by the pointwise mutual
information (PMI) between the two concept nodes of the edge:

PMI (c1, c2) = loд
( num (c1,c2 )
num (c1 ) ·num (c2 )

)
where num(c ) (or num(c1, c2)) is defined as the number of occur-
rences of a particular concept (or co-occurrences of a pair of con-
cepts withinW words of each other) in the target text corpus.

The PMI metric semantically gives us a good sense of the pos-
sibly related target concepts. Nevertheless, it yields a number of
false positives which we seek to eliminate, by utilizing additional
topological properties of the concept graph. We examine if the local
neighborhood of a concept is a sufficient indicator of its potential
relationships. However, we empirically find that local structural
information is insufficient to account for concept relationships
(Figure 3). Therefore, we employ a more global measure for this
purpose that takes into account the overall concept graph topology,
namely edge-based random walk betweenness centrality [46] (also
called current-flow betweenness centrality [3]). For each edge in
the weighted graph TG , it measures approximately how often a
node is traversed by a random walker going from any node in the
network to another. If a concept c1 appears often on random walks
from concept c2, then it is likely to be related to c2. Finally, we learn
a global threshold based on the betweenness centrality values, and
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consider only those target concept pairs as potentially related if
their edge betweenness centrality value is above the threshold.

We now have the set of source concept pairs that are related
via labels in SR to each other from the source ontology S . We
have also obtained the set of target concept pairs that are likely to
be related to each other and which will form the target ontology
T . We now generate a training dataset for both the source and
target domains, which will serve as input to the next step of BOLT-
K’s pipeline, i.e. learning the relationship between the pairs of
target concepts. From the source and target document corpora, we
extract sentences or blocks of sentences in which potentially related
concepts co-occur withinW words of each other. Henceforth, for
ease of understanding, we call a group ofW consecutive words
a sentence, even though they may physically span more than one
sentence of text. We mark the occurrences of the related concepts
or entities in each sentence. As mentioned earlier, the target dataset
may not have an abundant amount of labeled data available. To
account for this, we limit BOLT-K to use at most 5 labeled concept
pairs (and hence at most 5 sentences containing them) per target
relationship type for training.

4.2 Data Augmentation for the Target Domain
A crucial requirement of building a predictive model is the availabil-
ity of a sufficient amount of labeled training data for the relationship
types of the target domain. Hence, to control generalization error
and avoid overfitting to the limited training data available, we adopt
the technique of training data augmentation. It artificially enhances
labeled training datasets by transforming the available data items
such that the class label properties are preserved. This lends a major
advantage to our approach, i.e. the ability to transfer properties from
one taxonomic hierarchy to another at no additional annotation
cost. Some effective methods of performing text data augmentation
with minimal human effort could be to create sentence paraphrases,
or to substitute specific words or phrases with likely candidate
words (e.g. synonyms). In our work, we augment the relationship-
annotated target training sentences by replacing chosen words in
them. We want to do this as diversely as possible, such that the
syntactic and semantic equivalence between the original and al-
tered sentence is maintained. Inspired by Ratner et al [52], we first
identify the noun, verb and adjective terms in the target training
sentences using the StanfordCoreNLP part-of-speech tagger [39].
We filter out the terms that do not occur above a learned frequency
threshold. Out of these selected terms, we then iteratively sample a
term occurring to the left, in between, and to the right of a pair of
entities or concepts in each target sentence for substitution. We do
not replace more than two terms in a single sentence at a time, to
preserve the meaning and grammatical correctness of the modified
sentence. We replace the chosen terms in the following three ways.

The first is by constructing an n-gram language model [52].
It is built by recording the frequencies of n-gram occurrences in
the source and target corpora, filtering out the less frequent n-
grams, and applying Laplace smoothing to the n-gram counts. This
model samples words conditioned on the words preceding them.
It identifies the n-gram nx preceding the word or phrase x to be
replaced. It then finds from the corpora a list of terms lx , following
nx , sorted in descending order based on frequency. It finally replaces

x with the term at index i in lx . i is picked based on a geometric
distribution P[i] ∼ pi , where a more frequent term has a higher
probability of being chosen as a substitute [83]. The value of p
is fixed at 0.5. The n-gram model falls back to using bigrams (or
unigrams), in case the required trigram (or bigram) was filtered out.

For our second technique, we replace the chosen words in each
sentence with one of their synonyms from their synset gloss in
WordNet [15]. Since synonyms in a gloss are ranked according to
how frequently they are observed in natural language, we use a
similar geometric distribution as mentioned above to pick a syn-
onym substitute. For our third substitution strategy, we use a pre-
trained word2vec [41] word embedding model induced on texts
from PubMed, PMC and the English Wikipedia [43]. After obtain-
ing vector representations for each of the terms to be replaced, we
substitute them with the terms most similar to their vector rep-
resentations in the embedding space. We present a comparative
evaluation of the three augmentation strategies in Table 3. Once we
enhance the labeled dataset for the target domain, we use this data
in combination with the labeled examples from the source domain
to train the core model of BOLT-K, as described in Section 4.3.

4.3 BOLT-K Core Model
We now introduce the core model architecture of BOLT-K. It utilizes
human-annotated knowledge on ontological concept relationships
from a source domain, and minimally labeled and artificially aug-
mented data from a functionally similar target domain, to learn a
hierarchical ontology for the target domain. We build an LSTM-
based model with attentive pooling to learn an ontology for the
target concepts. We transfer ontological relationship knowledge
from the source to the target domain in this model, by sharing the
hidden layer representation and some of the model parameters be-
tween the two domains. We also combine the objective functions of
both domains for effective training. Such models have been used in
the literature for transfer learning in various applications [74, 81].

4.3.1 Base Model Components. Figure 2 presents an overview of
the core model of our proposed BOLT-K framework. It consists
of two parts: a base model architecture which is shared among
both the source and target domains, followed by domain-specific
neural network layers. We first describe each of the base model
components in detail.

The input to our model is a set of sentences obtained from the
source or target text corpora. Each sentence consists of n words
[x1,x2, ...,xn]. These words include a pair of ontology entities
linked by a relation label. Recent literature (e.g. [16, 25, 64, 67,
77]) has seen immense success in transforming words into high-
dimensional embeddings for diverse applications. The next layer of
our model is thus an embedding layer, which represents every in-
put word xi as an embedding di . di is formed by concatenating the
character-level representation of xi with its word embedding from
a pre-trained word2vec model [43]. This word2vec model has been
trained on texts from PubMed, PMC and the English Wikipedia.
Words which lack embeddings in the word2vec model are given a
random representation. We obtain the character-level representa-
tion of each word using a CNN. CNNs have been shown to encode
useful morphological information like word prefixes and suffixes
from the characters of a word [8, 37, 56]. Our CNN model consists
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Figure 2: Proposed BOLT-K model architecture

of a convolution layer followed by dropout and max pooling. Its
input is randomly initialized for each character of a given word xi ,
and its output is a character-level representation of xi . We form a
final embedding ei by appending two additional position indicators
to each di . These are the normalized word-distances of word xi
from both the related concepts in their respective sentence. The
embedding matrix [e1, e2, ..., en] is updated during model training
and serves as input to the next layer, i.e. the bidirectional LSTM.

Bidirectional LSTM [18] based models are used for a variety of
sequence modeling tasks where it is often beneficial to utilize both
the past and future context. These networks extend the traditional
uni-directional LSTM [20] units that only consider past sequen-
tial information, by accounting for temporal context information
from future time steps. At the core of the LSTM unit is a memory
cell controlled by three sigmoidal gates: the input gate it deciding
whether the unit retains its current input xt or not, the forget gate
ft to enable the unit to forget its previous memory context ct−1,
and the output gate ot controlling the context transferred to the
hidden state ht . The recurrences for the LSTM are defined as:

it = σ (Wixt +Uiht−1 + bi )
ft = σ (Wf xt +Uf ht−1 + bf )
ot = σ (Woxt +Uoht−1 + bo )

ct = ft ∗ ct−1 + it ∗ tanh(Wcxt +Ucht−1 + bc )
ht = ot ∗ tanh(ct )

where σ is the sigmoid function, tanh is the hyperbolic tangent
function and ∗ represents the product with the gate value.W ,U and
b are matrices of network parameters to be trained. As shown in
Figure 2, the Bi-LSTM layer combines its forward (

−→
ht ) and backward

(
←−
ht ) sequence contexts using the concatenation operation (⊕). The
output ht of this layer at time step t is given by:

ht =
−→
ht ⊕

←−
ht

The Bi-LSTM layer generates a sequence of word-level represen-
tations [h1,h2, ...,hn] utilizing past and future context, where hj,t

denotes the j-th element of ht . We perform one-dimensional max
pooling to obtain a fixed length vector from the Bi-LSTM output.

mpool, j = max
1≤t ≤n

[hj,t ]

The max pooling operation assumes that the important and
relevant latent semantic features in the sentence are present at the
positions [28] containing the maximum value of ht . However, this
might not always be the case. Hence, to focus on words that are
crucial in predicting the relationship between entities which might
lie anywhere in a sentence, and to give less importance to irrelevant
information in the sentences, we utilize an attention mechanism. It
highlights the important tokens in a given input sequence, which
are responsible for performing feature selection for the model as
well as for its predictions. Inspired by Yang et al [75], we introduce a
word-level attention layer to capture the similarity of a word token
with respect to its neighboring context tokens in an input sequence.
It assigns weights to the hidden outputs ht from the Bi-LSTM layer
as follows:

zj,t = tanh(Wzhj,t + bz )

α j,t =
exp (W T

a zj,t )∑
t exp (W T

a zj,t )

attpool, j =
∑
t α j,thj,t

Here,Wz and bz are the weight matrix and bias vector respec-
tively associated with the hidden state ht from the Bi-LSTM layer,
and hj,t represents the j-th sentence. Their non-linear transforma-
tion yields zt , for whichWa is the corresponding weight matrix.
α j,t are the normalized attention weights representing token im-
portances from a softmax function at time step t . attpool, j is the
attention-focused hidden state representation, given by the linear
combination of the Bi-LSTM output ht and the attention weights.

The final output of the base model hpool, j is the concatenation
(⊕) of the outputs of the max pooling layer and the attention layer.

hpool, j =mpool, j ⊕ attpool, j

4.3.2 Knowledge Transfer Components. All the layers in the base
model described in Section 4.3.1, namely the input, embedding,
bidirectional LSTM, attention and pooling layers are shared and
informed by training data from both the source and target domains.
The output from the base model or the shared block in Figure 2
serves as input to two separate fully connected dense layers, fol-
lowed by two softmax layers, one each for the source and target
domains. The softmax function predicts the relationship type be-
tween a pair of concepts in an input sentence.

4.3.3 Training. We next outline how we transfer information from
the source to the target domain by training our model jointly for
both domains. We adopt a training procedure similar to that de-
scribed by Yang et al. [74]. At each iteration, we sample one of the
domains from the source and target based on a binomial distribu-
tion, where the binomial probability is a tuned parameter. We then
optimize the objective function of the chosen domain by training
on a sampled batch of labeled instances. The parameters of the
shared block are thus updated due to training inputs from both
domains, while the fully connected layers are only affected by their
corresponding domain. We repeat this procedure until convergence,
with early stopping based on the target domain performance.
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We used 200-dimensional LSTM units with L2 regularization
in our framework. We optimized the cross-entropy error between
the true and predicted labels using Adam [27] with gradient clip-
ping. We set the initial learning rate to 0.001 with a decay of 0.05.
Dropout [60] was applied to the Bi-LSTM and pooling layers with
a probability value of 0.5. Computational support for all our experi-
ments was provided by the Ohio Supercomputer Center [5].

5 EVALUATION
5.1 Data Collection
We used the Open Biological and Biomedical Ontology (OBO)
Foundry [59] and the National Center for Biomedical Ontology
portal [44] which are collaborative repositories of science based on-
tologies, to obtain a family of ontologies related to the bio-medical
domain. Each ontology has been curated with the important and
relevant concepts associated with its specific sub-domain or subject,
as well as the relationship types among the concepts. We also cre-
ated and used commercial product ontologies from the open-source
Web Data Commons project [50]. It contains structured data ex-
tracted from the web on different topics. Table 1 shows the statistics
of various ontologies we have tested our BOLT-K framework on.
These include for each ontology the number of concepts present
in it, the number of related concept pairs, the total number of rela-
tionship types, and the median number of sentences available for
a single relationship type. The first six rows are based on various
human diseases and disorders. The next two rows show ontologies
of flowering plants (Angiosperms) and non-flowering plants (Gym-
nosperms). The final three rows are based on three popular kinds
of commercial products that are frequently manufactured, bought
and sold, namely, Earphones, Phones (mobile phones) and Television
sets. These ontologies are diverse and contain a total of less than
10K concepts, and less than 20 unique kinds of relationships.

We picked ontologies of sub-domains that are based on related
subjects shown in Table 1, and used them interchangeably as both
source and target ontologies to test our framework. For instance,
Dengue and Malaria are both vector-borne diseases transmitted by
mosquitoes and share some causes, symptoms and effects, so we use
them as a source-target pair. Likewise,Alzheimers, Multiple Sclerosis,
Depression and Anxiety are mental health disorders; Gymnosperms
and Angiosperms are two classes of plant varieties; Earphones are
an accessory of Phones; and Phones and Televisions are electronic
devices sharing some common properties. Hence, we also used
these as source-target ontology pairs to test BOLT-K.

As mentioned in Section 3, we require a corpus of text documents
containing sentences associated with the concepts in the source
and target ontologies S and T . To fulfill this requirement for the
bio-medical sub-domains, we used a combination of PubMed [4],
PubMed Central (PMC) and the English Wikipedia. For an ontology
subject C, we consider all those articles from PubMed, PMC and
Wikipedia as part of a text corpus associated with C if they contain
the term C either in their title or abstract. For the last three rows
of product hierarchies in Table 1, we constructed a text corpus
from the product information and descriptions extracted from the
Amazon Product Dataset [19]. This dataset includes information
about the numerous commodities sold online on www.amazon.com.

Table 1: Statistics of various domain ontologies used

Ontology sub-
domain name

No. of
con-
cepts

No. of
concept
pairs

No. of
rela-
tions

Median no.
of sentences
per relation

Dengue 5035 5923 11 6010
Malaria 2643 3556 11 5070
Alzheimers 5738 5961 2 9602
Multiple sclerosis 9036 11310 2 16518
Depressive disorder 2008 4576 3 3025
Anxiety disorder 1978 4194 3 3637
Gymnosperms 539 502 9 716
Angiosperms 306 302 10 590
Earphones 115 146 11 28
Phones 189 337 16 256
Television sets 72 87 11 8

5.2 Results
5.2.1 Identifying Related Concept Pairs. We first present in Figure 3
the performance of BOLT-K as well as two other baselines on the
first step of identifying potentially related concepts for the target
ontology, as described in Section 4.1. We consider each ontology in
Table 1 as a target ontology.

Our first baseline (yellow bars of context similarity in Figure 3)
associates a context with each target concept. This is a set of nearby
words around the mention of the concept in the target text corpus.
If a target concept has multiple mentions (and hence multiple con-
texts) in the corpus, we pick the context associated with a randomly
selected mention. We then compute an embedding for each con-
cept using a normalized term-frequency (tf-) weighted sum of the
embeddings of its context terms. We use a pre-trained word2vec
model [43] to get the term embeddings, ignoring the context terms
that do not have embeddings in this model. The tf- weights are
obtained from the frequencies of occurrence of the chosen context
terms, in the available contexts associated with every mention of
the target concept. Once we generate an aggregated embedding of
each concept, we compute the pairwise cosine similarity between
all pairs of concept embeddings. We filter out all those concept
pairs that do not have a similarity value above a learned thresh-
old, and consider the remaining pairs as potentially related. Our
second baseline (green bars of 2-hop jaccard in Figure 3) estimates
structurally similar concepts as possibly related to each other. It
computes the 2-hop Jaccard index between pairs of connected con-
cepts in the concept graph defined in Setion 4.1. For concepts c1
and c2, the Jaccard index is given by the number of neighbor con-
cepts common to both c1 and c2 and reachable from them in 2 hops,
divided by the union of the neighbors of c1 and c2. The pink bars of
RWBC in Figure 3 denote the edge-based randomwalk betweenness
centrality technique used in BOLT-K. The orange portions seen in
the last three bars show an overlap between the result numbers of
the context-based similarity and the 2-hop Jaccard strategies.

The RWBC measure considers a more global view of the concept
graph along with semantic attributes. We find that this causes a
marked improvement over merely using either semantic informa-
tion (the context similarity baseline), or the local structural neigh-
borhood of concepts in the weighted concept network (the Jaccard
index baseline). Our random walk betweenness centrality measure
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Figure 3: Performance of multiple approaches on identify-
ing the concepts that are to constitute the target ontology

correctly identifies as related, about 60-75% of the linked concept
pairs for the bio-medical ontologies. For the product hierarchies, it
identifies more than 70% of the related concept pairs. We note here
that every pair of related concepts that is present in the considered
ontologies may not occur in the text corpora, i.e. may not be ac-
companied by textual information. There is thus a limitation on the
number of potentially related concept pairs that can be found by our
technique. The blue bars show this upper bound on the identifiable
pairs of linked concepts for each ontology instance. This value is
76-80% for Dengue, Malaria and Multiple Sclerosis, and nearly 100%
for the remaining hierarchies. Changing the scale of the result of
BOLT-K’s edge-based betweenness centrality strategy based on this
upper bound, we observe an accuracy of more than 75% in finding
potentially related concept pairs for the ontology instances.

5.2.2 Constructing Domain Ontologies via Knowledge Transfer. To
the best of our knowledge, no existing work learns ontological rela-
tionships for a new target subject by levering prior knowledge from
a distinct but related source subject. Thus, we compare our method
with existing state-of-the-art techniques that only use information
from the target domain. We evaluate all approaches on the task
of ontological relationship prediction for the target ontology in
Table 2. We reiterate that BOLT-K does not assume that the source
and target ontologies have the same types of relationships. It uses
at most 5 relationship-labeled concept pair training examples per
target domain. We compare BOLT-K with the following baselines:

(1) PCNN-Att [79]: It employs a piecewise CNN with a sentence-
level attention mechanism and distant supervision.

(2) Path-Max [80]: It considers CNNs coupled with probabilistic
relation paths learnt from the sentences between entities.

(3) BLSTM-Att [84]: It uses a Bi-LSTM model without pooling,
and with an attention mechanism different from ours.

(4) ComplEx [61]: It uses low-rank matrix factorization to learn
complex-valued embeddings for entities and relations. We

found ComplEx to outperform multiple other knowledge
graph completion techniques like TransR [31], TransD [23],
DistMult [73] and HolE [47], so we report only its results.

(5) BOLT-K (tsr = 0.6) - no Att: This is a variant of our model
at a target sub-domain data sampling rate tsr = 0.6 (the
probability of the model being trained on data from the
target sub-domain), on using max pooling without attention.

(6) BOLT-K (tsr = tsr ): The last five rows of Table 2 are variants
of BOLT-K at target data sampling rates tsr = {0, 0.4, 0.6, 0.8, 1}.

The first column of Table 2 shows the different approaches, and
the subsequent columns show the ontology datasets. The S → T and
S ← T sub-columns for each column S ↔ T indicate the direction
of knowledge transfer, from ontology S toT andT to S respectively
for our approach. The ‘arrows’ have no significance for the other
approaches, merely indicating the ontology for which relations
are being learnt (T in case of S → T and S in case of S ← T ).
These results have been computed after applying all augmentation
strategies from Section 4.2 to the target training dataset.

We observe that BOLT-K obtains a 5-25% F1-score gain over the
baselines in learning relationships for the different ontologies, with
the best performance at a target training data sampling rate of 0.6.
This reinforces our hypothesis of the utility of levering prior source
knowledge in learning ontologies for a newly emergent target do-
main or sub-domain. BOLT-K is outperformed by ComplEx [61]
by about 1% and 4% F1 score points respectively on the Earphone
→ Phone and the Phone→ Earphone product ontology pairs. We
believe this is because though these two products are somewhat
related, their distinct characteristics may falsely inform our model
and detract from its performance. BOLT-K performs better on the
product pair of Phones and Televisions which share relatively more
common attributes. It is interesting to observe the difference in
performance on interchanging the source and target subject ontolo-
gies. For example, there is more value in transferring knowledge
from the Phone to the Television domain, compared to the reverse.

We further note that the overall performance of all approaches on
the bio-medical ontologies is significantly better than on the com-
mercial product ontologies. A reason for this could be the quality of
textual data available. The text descriptions are often quite generic
and repetitive across different product relation types (e.g. “details
about apple iphone 6 16gb - at&t - gold - great condition"). The varia-
tion and uniqueness in context and sentence structure is much lesser
than the text data for the bio-medical ontology datasets that come
from research, news or encyclopedia articles. Since ComplEx [61]
utilizes less information from textual descriptions compared to the
other methods, it performs better on the product datasets which
have lower quality text input. We also analyze the topological struc-
ture of the concept graph (from Section 4.1) for the various ontology
datasets. We find multiple well-separated connected components
in case of the bio-medical ontologies, signifying a higher separabil-
ity of their relationship categories. However, the product datasets
have few (≤ 3) connected components for more than 10 relation
categories. This implies that it is harder to distinguish between the
product relationship types based on the current information.

5.2.3 Role of Target Training Data Size. Augmenting the limited
amount of available target training data is a crucial step in our ap-
proach. Figure 4 (top) shows the change in F1-score of BOLT-K at the
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Table 2: Baseline F1 scores on the ontology pairs of Dengue ↔ Malaria, Alzheimers ↔ Multiple Sclerosis, Gymnosperms ↔
Angiosperms, Earphones↔ Phones, and Phones↔ Televisions. We use at most 5 target training sentences per relation type
with data augmentation. tsr is the target sub-domain sampling probability. The first sub-column of every S↔ T source-target
ontology pair denotes knowledge transfer from S→ T and the second denotes S← T (i.e. knowledge transfer from T→ S).

Approach Deng↔Mal Alz↔Mult Scl Depr↔ Anxi Gymno↔ Angio Earph↔ Phone Phone↔ TV
S→T S←T S→T S←T S→T S←T S→T S←T S→T S←T S→T S←T

PCNN-Att 0.468 0.51 0.501 0.45 0.577 0.63 0.555 0.6 0.44 0.47 0.4 0.43
Path-Max 0.6 0.589 0.578 0.55 0.655 0.72 0.624 0.602 0.501 0.5 0.471 0.469
BLSTM-Att 0.601 0.62 0.505 0.49 0.567 0.6 0.592 0.63 0.43 0.45 0.41 0.399
ComplEx 0.561 0.626 0.54 0.5 0.66 0.701 0.58 0.54 0.48 0.575 0.514 0.455
BOLT-K (tsr =0.6) - no Att 0.679 0.68 0.572 0.54 0.701 0.7 0.698 0.687 0.466 0.5 0.531 0.476
BOLT-K (tsr =1) 0.66 0.64 0.502 0.53 0.582 0.68 0.631 0.67 0.47 0.5 0.5 0.47
BOLT-K (tsr =0.8) 0.67 0.66 0.53 0.53 0.609 0.71 0.667 0.65 0.467 0.47 0.51 0.46
BOLT-K (tsr =0.4) 0.644 0.63 0.545 0.5 0.65 0.66 0.63 0.62 0.44 0.45 0.46 0.44
BOLT-K (tsr =0) 0.527 0.51 0.499 0.48 0.576 0.6 0.55 0.58 0.398 0.401 0.41 0.399
BOLT-K (tsr =0.6) 0.713 0.728 0.61 0.562 0.748 0.747 0.724 0.725 0.487 0.53 0.551 0.498
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Figure 4: F1-score vs training data size for Dengue→Malaria
(top) and Dengue→ Angiosperms (bottom) ontology pairs.

target data sampling rates tsr = {0.6, 1} for the Denдue → Malaria
ontology pair.We compare BOLT-K to the best performing baselines
from Table 2 (PathMax [80] and ComplEx [61]), as the number of
training instances per relation type are increased. We also show in
Figure 4 (bottom) an attempt to learn an ontology for Angiosperms
using information from a dissimilar and unrelated subject, Dengue.
The solid, thick dashed and thin dashed line plots denote BOLT-K,
PathMax and ComplEx respectively. The red plots use only random
oversampling to augment the training data, while the blue and
green plots use all strategies in Section 4.2. We observe that in case
of Denдue → Malaria (top plot), as expected, the F1-score of each
model rises with the amount of training data it receives. This gain
is particularly significant at the left of the x-axis, from 5 to about
1000 training instances per relation category. Employing better data
augmentation strategies than random oversampling contributes to

the performance. Transferring knowledge from the source ontology
lends us a consistent advantage of at least 5%, even at the maximum
number of target training instances per relation type. In case of
Denдue → Anдiosperms (bottom plot), BOLT-K performs the best
at tsr = 1, i.e. without any input from the unrelated source (blue
solid line plot). It obtains a 4% gain over ComplEx at the maximum
number of training examples per relation class. However, training
input from the dissimilar source Dengue causes a performance drop
(red and green solid line plots).

We next examine in Table 3 the impact of different data augmen-
tation strategies on the performance of BOLT-K, on the Denдue →
Malaria ontology pair. We observe similar trends on the other
datasets as well. The first two rows show the performance using
simple random oversampling and Synthetic Minority Oversampling
(SMOTE) [6] on the target training examples, followed by the three
augmentation strategies described in Section 4.2. The last row of
Table 3 shows that these three strategies complement one another.
Employing them all together with random oversampling gives us a
performance advantage of about 4-8% over any one of them.

5.2.4 Role of Attention. Table 2 indicates that attentive pooling
lends BOLT-K an F1 score gain of nearly 5%. Further drilling down,
Figure 5 shows a heatmap of the attention weight values learned
by BOLT-K for sentences belonging to different relation types. The
cells of the heatmap contain the sentence word they represent. The
background color highlights the importance of a word with respect
to its neighboring context, and consequently, how it affects our
model’s decision. The words in boldface are the concept phrases
between which a relation is being predicted. For instance, the first
row of the heatmap demonstrates that the words ‘refers’, ‘to’, and
‘a’ (dark background) are crucial in deciding the presence of an is-a
relation between the concept phrases virion assembly and process
of dengue virus. Similarly, in the fifth row, the words ‘begins’, ‘after’
and ‘follows’ influence the detection of the preceded-by relation
between the concept phrases incubation period and dengue disease
course. These examples show that BOLT-K has correctly learnt the
relevant semantics needed to detect ontological relations between
emergent concept phrases.
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Figure 5: Visualizing word attention weights for sentences of certain relation types, for the Dengue ontology. The related
concept phrase pairs in the sentence are in boldface, and a darker background corresponds to a higher attention weight.

Table 3: Assessing various training data augmentationmeth-
ods for BOLT-K, on the Dengue→Malaria ontology pair

.
Augmentation Technique Target F1 score
Random oversampling (Rand OS) 0.511
SMOTE oversampling 0.458
WordNet synonym based replacement + Rand OS 0.66
Word embedding based replacement + Rand OS 0.637
Trigram model based replacement + Rand OS 0.69
WordNet + Word embedding + Trigram + Rand OS 0.713

5.3 Discussion
We now dive deeper into the kind of ontological relationship in-
formation that our model can transfer across domains. Figure 6
displays the 2-dimensional t-SNE [38] visualizations of the repre-
sentations learnt by BOLT-K for the sentence inputs of various
relation classes. We observe that the relationships are largely well
separable in case of the Denдue → Malaria ontology pair (Fig-
ure 6 top), with semantically similar relations co-located in their
vector space. For example, the relations participates-in, agent-in,
has-role, part-of and bearer-of are situated nearby, and away from
the relatively dissimilar relations results-in and inheres-in. We do
not see as clear a segregation between the relation categories for
Televisions → Phones (Figure 6 bottom). But we do find some rela-
tions alike in meaning close by in the vector space too, e.g. RAM
and memory, network-gen and network-tech.

Table 4 shows the relation categories dominantly mispredicted
by our model and the relation type that they are frequently mispre-
dicted as, for different ontology datasets. It also reports for each
mispredicted relation category r, the percentage of test instances of
category r that were mispredicted. We find that a common reason
for mispredictions is the high similarity in the meaning of certain
relationships, due to which they can be used interchangeably in
natural language. For instance, BOLT-K is unable to distinguish
between the relations is-a and type-of in case of Depression ↔
Anxiety, participates-in and has-role in case of Dengue↔ Malaria
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Figure 6: Visualizing learnt concept pair representations for
Dengue→Malaria (top) and Televisions→ Phones (bottom).

and preceded-by and develops-from in case of Gymnosperms↔ An-
giosperms. We also observe this trend in some cases of the product
ontology pairs (last four rows of Table 4), such as RAM andmemory,
brand and phone-type, and total-size and viewable-size.

As part of further analysis, we seek to understand how well
our model can recognize hitherto unseen relation types. For this
purpose, we remove or “leave out" one relationship class (i.e. all
concept pairs and sentences associated with it) completely from the
training dataset of the target sub-domain (and from the training
data of the source sub-domain if present). We train our model with
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Table 4: Frequently mispredicted relation types for a set of
ontology pairs. For a relation type r, the parentheses show
the percentage of mispredicted test instances of type r.

Source→ Target Mispred. rel type: Frequently mispred. as
Dengue→Malaria part-of (35%): is-a; inheres-in (21%): part-of ;

participates-in (16%): has-role; agent-in (7%):
participates-in; bearer-of (6%): agent-in

Malaria→ Dengue part-of (17%): is-a; has-role (17%): part-of ;
happens-during (8%): part-of ; precedes (6%):
happens-during

Alzheimers→
Multiple Sclerosis

type-of (40%): has-type; has-type (38%):
type-of

Multiple Sclerosis→
Alzheimers

type-of (47%): has-type; has-type (41%):
type-of

Depression→ Anxiety is-a (36%): type-of ; is-a (12%): has-type
Anxiety→ Depression is-a (24%): type-of ; type-of (18%): has-type
Gymnosperms→
Angiosperms

part-of (19%): is-a; adjacent-to (20%): part-of ;
has-part (21%): develops-from; located-in (36%):
part-of

Angiosperms→
Gymnosperms

preceded-by (16%): develops-from;
develops-from (11%): part-of ; has-participant
(11%): part-of ; part-of (7%): is-a

Earphones→ Phones brand (42%): phone-type; phone-type (38%):
brand; display-res (29%): color; phone-carrier
(25%): network-gen; RAM (25%): memory

Phones→ Earphones model (44%): product-type; brand (30%): model;
color (30%): brand; additional-features (22%):
compatibility; tagline (20%): brand

Phones→ Televisions refresh-rate (39%): display-type; model (29%):
product-type; viewable-size (29%): total-size;
display-res (23%): display-type

Televisions→ Phones RAM (58%): memory; cellular (34%): mpn;
phone-type (32%): brand; display-res (27%):
phone-type; cellular (27%): phone-carrier

Table 5: Novel relation detection for Dengue→Malaria pair.

Relation type
r left out dur-
ing training

% of left out
concept pairs
detected as
novel

Novel concept pairs missed.
s(x%) means x% concept pairs
related by r were mispredicted
as having relation s.

is-a 76% part-of(8%), has-role(5%)
part-of 51% has-role(19%), is-a(10%)
happens-during 66% results-in(11%), part-of(6%)
precedes 70% results-in(12%), happens-during(9%)
results-in 61% precedes(14%), happens-during(9%)
has-role 39% participates-in(21%), agent-in(17%)
inheres-in 58% part-of(17%), bearer-of(10%)
agent-in 41% participates-in(22%), bearer-of(19%)
participates-in 46% has-role(23%), part-of(17%)
bearer-of 64% agent-in(13%), part-of(9%)
realized-by 67% results-in(9%), precedes(6%)

the remaining training data as described in Section 4. We then use
the Isolation Forest algorithm [33] with the authors’ best case pa-
rameter settings to see if BOLT-K can detect concept pairs with the
unseen relation type as novel, i.e. linked by a novel or unseen rela-
tionship. Isolation Forest takes as input the d-dimensional features

obtained from BOLT-K’s penultimate layer before the softmax layer.
This novelty detection experiment shows our model’s capability
in identifying new or unseen relation categories which cannot be
easily substituted by another, previously seen relation type.

The results are shown in Table 5, for the Dengue→ Malaria on-
tology pair. The second column shows the fraction of concept pairs
(whose relation class was left out while training) that have been
detected as novel. For distinctive relationship types such as is-a, we
find that more than 75% of the concept pairs which are linked by
this relation in the ground truth are predicted as novel. But for left
out relations which are not as semantically distinct from the other
relationship types, BOLT-K is unable to satisfactorily identify that
they were part of an unseen class. For instance, BOLT-K is unable to
flag as novel more than 50% of the concept pairs linked by has-role
and participates-in, when they were left out during training. For
the concept pairs that were connected by the left-out relationship
yet were not detected as novel, we investigated the relationship
categories that BOLT-K was predicting them as. The third column
of Table 5 shows the two dominant relation types that most concept
pairs (linked by the left-out relationship) are mispredicted as be-
longing to. We found these predictions to be largely logical, when
compared with the actual ground truth relationships. For example,
17% of the concept pairs linked by an inheres-in relation that was
unseen during training were mispredicted as being connected by a
part-of relation. 21% of the concept pairs connected by a has-role re-
lation were mispredicted as having a participates-in relation. These
mispredictions are semantically plausible due to the similarity in
meaning of the misunderstood relationship groups.

6 CONCLUSION AND FUTUREWORK
We present BOLT-K, a Bi-LSTM framework with attentive pooling.
It identifies concepts relevant to newly emerging subjects or events
in various domains from their textual accounts, and automatically
learns structured ontologies for them. We bootstrap this process by
transferring knowledge from an existing, related sub-domain. We
also leverage training data augmentation to accentuate the limited
expert-labeled data available for these emergent sub-domains, at
no further annotation cost. We extensively evaluate BOLT-K on
real-life bio-medical and commercial product ontologies.

BOLT-K currently involves manual intervention to define func-
tionally or logically related domains for knowledge transfer during
ontology learning. In future, we plan to automate this task. Since
the meaning and validity of concepts and their relationships may
change over time, we seek to enrich BOLT-K by learning concept
and relation representations that can effectively capture their evolv-
ing dynamics. This can enable the prediction of time instances at
which concepts or relations are likely to appear, disappear or reap-
pear with respect to an ontology snapshot. We also aim to improve
BOLT-K’s scalability so it can handle larger and deeper ontologies.
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