
Game Reinforcement Learning
Pranav Maneriker, Arnab Ghosh , Arpit Shrivastava , Piyush P. Kurur

Computer Science and Engineering , IIT Kanpur

Objectives

The primary objectives in our project were:
•Create a library for Reinforcement Learning
•Primary Reinforcement Learning algorithms
such as Q-Learning and SARSA had to be
written

•Create an interface for learning the best moves
for a 2 player game

•Provide some example 2 player games that
conforms to the above standard and test the
library.

Introduction

The Machine Learning library in Haskell (HLearn)
lacked a support for Reinforcement Learning Algo-
rithms.Hence we started off by implementing the pri-
mary set of Reinforcement Learning Algorithms :
Q-Learning and SARSA which are the 2 most fre-
quently used Reinforcement Learning algorithms .
To test our algorithms we implemented a small game
in our system where a cat and mouse are placed on
a board with some obstacles and a piece of cheese
and the objective of the mouse is to get the cheese
and the objective of the cat is to get the mouse .
We then provide an interface to specify any 2 player
game in terms of its valid set of moves and a reward
function associated with each state which greatly
simplifies anyone who wants to write a 2 player
game using the reinforcement learning algorithms
supported by our library.

Figure 1: Cat and Mouse Game

Reinforcement Learning

Reinforcement learning is an area of machine learn-
ing inspired by behaviorist psychology, concerned
with how software agents ought to take actions in
an environment so as to maximize some notion of
cumulative reward.[1]
The basic reinforcement learning model consists
of:[1]

1 a set of environment states S;
2 a set of actions A;
3 rules of transitioning between states;
4 rules that determine the scalar immediate reward
of a transition;

5 rules that describe what the agent observes.

QLearn

The major steps of the algorithm are [2]:
1 Initialize the Q-values table, Q(s, a).
2 At a particular state s choose an action, a, based
on an ε parameter i.e with ε probability a random
action is chosen or else the action with the
maximum Q value is chosen .

3 Take the action, and observe the reward, r, as
well as the new state, s’.

4 Update the Q-value for the state using the
observed reward and the maximum reward
possible for the next state.

5 Set the state to the new state, and repeat the
process until a terminal state is reached.

Crux of Reinforcement Learning

A reinforcement learning agent interacts with its environment in discrete time steps. At each time t, the
agent receives an observation ot, which typically includes the reward rt. It then chooses an action at from
the set of actions available, which is subsequently sent to the environment. The environment moves to a
new state st+1 and the reward rt+1 associated with the transition (st, at, st+1) is determined. The goal of
a reinforcement learning agent is to collect as much reward as possible.[1]

SARSA

The major steps of the algorithm are : [2]
1 Initialize the Q-values table, Q(s, a).
2 At a particular state s choose an action, a, based
on an ε parameter i.e with ε probability a random
action is chosen or else the action with the
maximum Q value is chosen .

3 Take the action, and observe the reward, r, as
well as the new state, s’.

4 Update the Q-value for the state using the
observed reward and the maximum reward
possible for the next state.

5 Set the state to the new state, and repeat the
process until a terminal state is reached.

Update Equations

The update equation for QLearn is : [2]
Q(s, a)← Q(s, a)+α[r+γmaxα′Q(s′, a′)−Q(s, a)]
The update equation for SARSA is : [2]
Q(s, a)← Q(s, a)+α[r+γmaxα′Q(s′, a′)−Q(s, a)]
The major difference between it and Q-Learning, is
that the maximum reward for the next state is not
necessarily used for updating the Q-values. Instead,
a new action, and therefore reward, is selected using
the same policy that determined the original action.
Another difference between the 2 algorithms is the
fact that in SARSA 2 action steps are required to
determine the next state-action pair along with the
first.

Implementation

Figure 2: The Game ADT

Available module functions :
• Learn.Learner.learnGame
• Learn.Helpers.getAction
• Game.playGameInteractive

References

[1]Wikipedia.
Reinforcement learning.
Retrieved from Wikipedia on 13 November 2015.

[2] Richard S. Sutton and Andrew G. Barto.
Reinforcement learning: An introduction.

Acknowledgements

We are thankful to the course Functional Programming and
especially Professor Piyush Kurur for providing us this oppor-
tunity to work in this field and also we thank the Haskell wiki
which accurately states the usage of several functions without
which it would have been much more difficult.

Contact Information
•Web:
https://github.com/arnabgho/RLearnHaskell

•Email: mailto:mpranav@iitk.ac.in
•Email: mailto:arnabgho@iitk.ac.in
•Email: mailto:shriap@iitk.ac.in

https://github.com/arnabgho/RLearnHaskell
mailto:mpranav@iitk.ac.in
mailto:arnabgho@iitk.ac.in
mailto:shriap@iitk.ac.in

