Objectives

The primary objectives in our project were:

= Create a library for Reinforcement Learning

» Primary Reinforcement Learning algorithms
such as Q-Learning and SARSA had to be

written

« Create an interface for learning the best moves
for a 2 player game

« Provide some example 2 player games that
conforms to the above standard and test the
library.

Introduction

The Machine Learning library in Haskell (HLearn)
lacked a support for Reinforcement Learning Algo-
rithms.Hence we started off by implementing the pri-

mary set of Reinforcement Learning Algorithms :
()-Learning and SARSA which are the 2 most fre-
quently used Reinforcement Learning algorithms .
To test our algorithms we implemented a small game
in our system where a cat and mouse are placed on
a board with some obstacles and a piece of cheese
and the objective of the mouse is to get the cheese
and the objective of the cat is to get the mouse .
We then provide an interface to specify any 2 player
game in terms of its valid set of moves and a reward
function associated with each state which greatly
simplifies anyone who wants to write a 2 player
came using the reinforcement learning algorithms
supported by our library:.

Figure 1: Cat and Mouse Game

Game Reinforcement Learning
Pranav Maneriker, Arnab Ghosh , Arpit Shrivastava , Piyush P. Kurur

Computer Science and Engineering , |IT Kanpur

Reinforcement Learning

Reinforcement learning is an area of machine learn-
ing inspired by behaviorist psychology, concerned
with how software agents ought to take actions in
an environment so as to maximize some notion of
cumulative reward.|1]

The basic reinforcement learning model consists

of:|1]

®a set of environment states S;

®a set of actions A;

orules of transitioning between states;

orules that determine the scalar immediate reward
of a transition;

orules that describe what the agent observes.

QLearn

The major steps of the algorithm are [2]:
o Initialize the Q-values table, Q(s, a).

o At a particular state s choose an action, a, based
on an € parameter i.e with € probability a random
action is chosen or else the action with the
maximum () value is chosen .

o Take the action, and observe the reward, r, as
well as the new state, s’

o Update the Q-value for the state using the
observed reward and the maximum reward
possible for the next state.

@ 5Set the state to the new state, and repeat the
process until a terminal state is reached.

Crux of Reinforcement Learning

A reinforcement learning agent interacts with its environment in discrete time steps. At each time t, the

agent receives an observation o;, which typically includes the reward r;. It then chooses an action a; from

the set of actions available, which is subsequently sent to the environment. The environment moves to a

new state sy;,1 and the reward 7,1 associated with the transition (s, as, s;11) is determined. The goal of

a reinforcement learning agent is to collect as much reward as possible.|1]

SARSA

The major steps of the algorithm are : |2
o Initialize the Q-values table, Q(s, a).

o At a particular state s choose an action, a, based
on an € parameter i.e with € probability a random
action is chosen or else the action with the
maximum () value is chosen .

o Take the action, and observe the reward, r, as
well as the new state, s’

o Update the Q-value for the state using the
observed reward and the maximum reward
possible for the next state.

@5Set the state to the new state, and repeat the
process until a terminal state is reached.

Update Equations

The update equation for QLearn is : 2|
Q(s,a) < Q(s,a)talr+ymax,Q(s', a")—Q(s,a)]
The update equation for SARSA is : [2)]
Q(s,a) + Q(s,a)t+alr+ymaxQ(s',a’)—Q(s, a))
The major difference between it and -Learning, is
that the maximum reward for the next state is not

necessarily used for updating the Q-values. Instead,
a new action, and therefore reward, is selected using

the same policy that determined the original action.
Another difference between the 2 algorithms is the
fact that in SARSA 2 action steps are required to
determine the next state-action pair along with the
first.

Implementation

data Game state action = Game{

isTermState :: state -> Bool,

reward :: state -> (Double, Double),

nextState :: state -> (action, action) -> state,
getPossibleActions :: state -> ([action],[action]),

startState :: state,
trainer :: state -> (action, action)

}
Figure 2: The Game ADT

Available module functions :

» Learn.Learner. learnGame
« Learn.Helpers.getAction

« Game.playGamelInteractive

References

1] Wikipedia.
Reinforcement learning.
Retrieved from Wikipedia on 13 November 2015.

2] Richard S. Sutton and Andrew G. Barto.

Reinforcement learning: An introduction.

Acknowledgements

We are thankful to the course Functional Programming and
especially Professor Piyush Kurur for providing us this oppor-
tunity to work in this field and also we thank the Haskell wiki
which accurately states the usage of several functions without
which it would have been much more difficult.

= Web:
https://github.com/arnabgho/RLearnHaskell

Email: mailto:mpranav@iitk.ac.in

Email: mailto:arnabgho@iitk.ac.in

Email: mailto:shriap@iitk.ac.in


https://github.com/arnabgho/RLearnHaskell
mailto:mpranav@iitk.ac.in
mailto:arnabgho@iitk.ac.in
mailto:shriap@iitk.ac.in

